Pseudorandom generators from one-way functions: A simple construction for any hardness

被引:0
作者
Holenstein, Thomas [1 ]
机构
[1] ETH, Dept Comp Sci, CH-8092 Zurich, Switzerland
来源
THEORY OF CRYPTOGRAPHY, PROCEEDINGS | 2006年 / 3876卷
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In a seminal paper, Hastad, Impagliazzo, Levin, and Luby showed that pseudorandom generators exist if and only if one-way functions exist. The construction they propose to obtain a pseudorandom generator from an n-bit one-way function uses 0(n(8)) random bits in the input (which is the most important complexity measure of such a construction). In this work we study how much this can be reduced if the one-way function satisfies a stronger security requirement. For example, we show how to obtain a pseudorandom generator which satisfies a standard notion of security using only O(n(4) log(2)(n)) bits of randomness if a one-way function with exponential security is given, i.e., a one-way function for which no polynomial time algorithm has probability higher than 2(-cn) in inverting for some constant c. Using the uniform variant of Impagliazzo's hard-core lemma given in [7] our constructions and proofs axe self-contained within this paper, and as a special case of our main theorem, we give the first explicit description of the most efficient construction from [6].
引用
收藏
页码:443 / 461
页数:19
相关论文
共 50 条
[41]   Semigroups and one-way functions [J].
Birget, J. C. .
INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2015, 25 (1-2) :3-36
[42]   On complete one-way functions [J].
A. A. Kozhevnikov ;
S. I. Nikolenko .
Problems of Information Transmission, 2009, 45 :168-183
[43]   Separability and one-way functions [J].
Lance Fortnow ;
John D. Rogers .
computational complexity, 2002, 11 :137-157
[44]   Physical one-way functions [J].
Pappu, R ;
Recht, R ;
Taylor, J ;
Gershenfeld, N .
SCIENCE, 2002, 297 (5589) :2026-2030
[45]   The Tale of One-Way Functions [J].
L. A. Levin .
Problems of Information Transmission, 2003, 39 (1) :92-103
[46]   ONE-WAY HASH FUNCTIONS [J].
SCHNEIER, B .
DR DOBBS JOURNAL, 1991, 16 (09) :148-150
[47]   Separability and one-way functions [J].
Fortnow, L ;
Rogers, JD .
COMPUTATIONAL COMPLEXITY, 2002, 11 (3-4) :137-157
[48]   On complete one-way functions [J].
Kozhevnikov, A. A. ;
Nikolenko, S. I. .
PROBLEMS OF INFORMATION TRANSMISSION, 2009, 45 (02) :168-183
[49]   On Building Fine-Grained One-Way Functions from Strong Average-Case Hardness [J].
Brzuska, Chris ;
Couteau, Geoffroy .
JOURNAL OF CRYPTOLOGY, 2025, 38 (01)
[50]   On Building Fine-Grained One-Way Functions from Strong Average-Case Hardness [J].
Brzuska, Chris ;
Couteau, Geoffroy .
ADVANCES IN CRYPTOLOGY - EUROCRYPT 2022, PT II, 2022, 13276 :584-613