Intra-urban spatial variability in wintertime street-level concentrations of multiple combustion-related air pollutants: The New York City Community Air Survey (NYCCAS)

被引:118
作者
Clougherty, Jane E. [1 ]
Kheirbek, Iyad [2 ]
Eisl, Holger M. [3 ]
Ross, Zev [4 ]
Pezeshki, Grant [2 ]
Gorczynski, John E. [3 ]
Johnson, Sarah [2 ]
Markowitz, Steven [3 ]
Kass, Daniel [2 ]
Matte, Thomas [2 ]
机构
[1] Univ Pittsburgh, Grad Sch Publ Hlth, Dept Environm & Occupat Hlth, Pittsburgh, PA 15219 USA
[2] New York City Dept Hlth & Mental Hyg, New York, NY USA
[3] Queens Coll, Ctr Biol Nat Syst, Flushing, NY USA
[4] ZevRoss Spatial Anal, Ithaca, NY USA
关键词
land-use regression (LUR); urban air pollution; fine particles (PM2.5); black carbon (BC); nitrogen dioxide (NO2); sulfur dioxide (SO2); LAND-USE REGRESSION; POLLUTION; PM2.5; INDICATORS; INFORMATION; EXPOSURE; CHILDREN; CARBON; GIS;
D O I
10.1038/jes.2012.125
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Although intra-urban air pollution differs by season, few monitoring networks provide adequate geographic density and year-round coverage to fully characterize seasonal patterns. Here, we report winter intra-urban monitoring and land-use regression (LUR) results from the New York City Community Air Survey (NYCCAS). Two-week integrated samples of fine particles (PM2.5), black carbon (BC), nitrogen oxides (NOx) and sulfur dioxide (SO2) were collected at 155 city-wide street-level locations during winter 2008-2009. Sites were selected using stratified random sampling, randomized across sampling sessions to minimize spatio-temporal confounding. LUR was used to identify GIS-based source indicators associated with higher concentrations. Prediction surfaces were produced using kriging with external drift. Each pollutant varied twofold or more across sites, with higher concentrations near midtown Manhattan. All pollutants were positively correlated, particularly PM2.5 and BC (Spearman's r=0.84). Density of oil-burning boilers, total and truck traffic density, and temporality explained 84% of PM2.5 variation. Densities of total traffic, truck traffic, oil-burning boilers and industrial space, with temporality, explained 65% of BC variation. Temporality, built space, bus route location, and traffic density described 67% of nitrogen dioxide variation. Residual oil-burning units, nighttime population and temporality explained 77% of SO2 variation. Spatial variation in combustion-related pollutants in New York City was strongly associated with oil-burning and traffic density. Chronic exposure disparities and unique local sources can be identified through year-round saturation monitoring. Journal of Exposure Science and Environmental Epidemiology (2013) 23, 232-240; doi:10.1038/jes.2012.125; published online 30 January 2013
引用
收藏
页码:232 / 240
页数:9
相关论文
共 25 条
[1]   Hospital Admissions and Chemical Composition of Fine Particle Air Pollution [J].
Bell, Michelle L. ;
Ebisu, Keita ;
Peng, Roger D. ;
Samet, Jonathan M. ;
Dominici, Francesca .
AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2009, 179 (12) :1115-1120
[2]   Estimating long-term average particulate air pollution concentrations: Application of traffic indicators and geographic information systems [J].
Brauer, M ;
Hoek, G ;
van Vliet, P ;
Meliefste, K ;
Fischer, P ;
Gehring, U ;
Heinrich, J ;
Cyrys, J ;
Bellander, T ;
Lewne, M ;
Brunekreef, B .
EPIDEMIOLOGY, 2003, 14 (02) :228-239
[3]   Air pollution from traffic and the development of respiratory infections and asthmatic and allergic symptoms in children [J].
Brauer, M ;
Hoek, G ;
Van Vliet, P ;
Meliefste, K ;
Fischer, PH ;
Wijga, A ;
Koopman, LP ;
Neijens, HJ ;
Gerritsen, J ;
Kerkhof, M ;
Heinrich, J ;
Bellander, T ;
Brunekreef, B .
AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2002, 166 (08) :1092-1098
[4]   Mapping urban air pollution using GIS: a regression-based approach [J].
Briggs, DJ ;
Collins, S ;
Elliott, P ;
Fischer, P ;
Kingham, S ;
Lebret, E ;
Pryl, K ;
VAnReeuwijk, H ;
Smallbone, K ;
VanderVeen, A .
INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE, 1997, 11 (07) :699-718
[5]   Air pollution from truck traffic and lung function in children living near motorways [J].
Brunekreef, B ;
Janssen, NAH ;
deHartog, J ;
Harssema, H ;
Knape, M ;
vanVliet, P .
EPIDEMIOLOGY, 1997, 8 (03) :298-303
[6]   Land use regression modeling of intra-urban residential variability in multiple traffic-related air pollutants [J].
Clougherty, Jane E. ;
Wright, Rosalind J. ;
Baxter, Lisa K. ;
Levy, Jonathan I. .
ENVIRONMENTAL HEALTH, 2008, 7 (1)
[7]   Comparison between different traffic-related particle indicators:: Elemental. carbon (EC), PM2.5 mass, and absorbance [J].
Cyrys, J ;
Heinrich, J ;
Hoek, G ;
Meliefste, K ;
Lewné, M ;
Gehring, U ;
Bellander, T ;
Fischer, P ;
Van Vliet, P ;
Brauer, M ;
Wichmann, HE ;
Brunekreef, B .
JOURNAL OF EXPOSURE ANALYSIS AND ENVIRONMENTAL EPIDEMIOLOGY, 2003, 13 (02) :134-143
[8]   Predicting long-term average concentrations of traffic-related air pollutants using GIS-based information [J].
Hochadel, M ;
Heinrich, J ;
Gehring, U ;
Morgenstern, V ;
Kuhlbusch, T ;
Link, E ;
Wichmann, HE ;
Krämer, U .
ATMOSPHERIC ENVIRONMENT, 2006, 40 (03) :542-553
[9]   Association between mortality and indicators of traffic-related air pollution in the Netherlands: a cohort study [J].
Hoek, G ;
Brunekreef, B ;
Goldbohm, S ;
Fischer, P ;
van den Brandt, PA .
LANCET, 2002, 360 (9341) :1203-1209
[10]   Modeling the intraurban variability of ambient traffic pollution in Toronto, Canada [J].
Jerrett, M. ;
Arain, M. A. ;
Kanaroglou, P. ;
Beckerman, B. ;
Crouse, D. ;
Gilbert, N. L. ;
Brook, J. R. ;
Finkelstein, N. ;
Finkelstein, M. M. .
JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH-PART A-CURRENT ISSUES, 2007, 70 (3-4) :200-212