On (p, 1)-total labelling of special 1-planar graphs

被引:0
|
作者
Sun, Lin [1 ,2 ]
Cai, Hua [1 ,2 ]
机构
[1] Changji Univ, Dept Math, Changji 831100, Peoples R China
[2] Shandong Univ, Sch Math, Jinan 250100, Peoples R China
关键词
1-planar graph; (p; 1)-total labelling; minimal counterexample; discharging method; TOTAL COLORINGS; EDGE COLORINGS; PLANAR GRAPHS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A graph is 1-planar if it can be drawn on the plane so that each edge is crossed by at most one other edge. A k-(p, 1)-total labelling of a graph G is a function f from V(G) boolean OR E(G) to the color set {0,1, ..., k} such that vertical bar f(u) - f(v)vertical bar >= 1 if uv epsilon E(G), vertical bar f(e(1)) - f(e(2))vertical bar >= 1 if e(1) and e(2) are two adjacent edges in G and vertical bar f(u) - f(e)vertical bar >= p if the vertex u is incident to the edge e. The minimum kappa such that G has a k-(p, 1)-total labelling, denoted by lambda(T)(p)(G), is called the (p, 1)-total labelling number of G. In this paper, we prove that, if a 1-planar graph G satisfies that maximum degree Delta(G) >= 7p + 1 and no adjacent triangles in G or maximum degree Delta(G) >= 6p + 3 and no intersecting triangles in G, then lambda(T)(p)(G) <= Delta + 2p - 2, p >= 2.
引用
收藏
页码:87 / 96
页数:10
相关论文
共 50 条
  • [21] Note on improper coloring of 1-planar graphs
    Yanan Chu
    Lei Sun
    Jun Yue
    Czechoslovak Mathematical Journal, 2019, 69 : 955 - 968
  • [22] A note on the surviving rate of 1-planar graphs
    Kong, Jiangxu
    Zhang, Lianzhu
    DISCRETE MATHEMATICS, 2017, 340 (05) : 1074 - 1079
  • [23] Neighbor sum distinguishing total choosability of 1-planar graphs with maximum degree at least 24
    Sun, Lin
    Yu, Guanglong
    Li, Xin
    DISCRETE MATHEMATICS, 2021, 344 (01)
  • [24] Some sufficient conditions for 1-planar graphs to be Class 1
    Zhang, Wenwen
    Wu, Jian-Liang
    THEORETICAL COMPUTER SCIENCE, 2015, 566 : 50 - 58
  • [25] Straight-line drawings of 1-planar graphs
    Brandenburg, Franz J.
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2024, 116
  • [26] 1-Planar Graphs have Constant Book Thickness
    Bekos, Michael A.
    Bruckdorfer, Till
    Kaufmann, Michael
    Raftopoulou, Chrysanthi
    ALGORITHMS - ESA 2015, 2015, 9294 : 130 - 141
  • [27] Acyclic Chromatic Index of Triangle-free 1-Planar Graphs
    Chen, Jijuan
    Wang, Tao
    Zhang, Huiqin
    GRAPHS AND COMBINATORICS, 2017, 33 (04) : 859 - 868
  • [28] 1-planar graphs with girth at least 6 are (1,1,1,1)-colorable
    Song, Lili
    Sun, Lei
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2023, 73 (04) : 993 - 1006
  • [29] On local properties of 1-planar graphs with high minimum degree
    Hudak, David
    Madaras, Tomas
    ARS MATHEMATICA CONTEMPORANEA, 2011, 4 (02) : 245 - 254
  • [30] T-shape visibility representations of 1-planar graphs
    Brandenburg, Franz J.
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2018, 69 : 16 - 30