Finite volume methods for unidirectional dispersive wave models

被引:38
作者
Dutykh, D. [1 ]
Katsaounis, Th. [2 ,3 ]
Mitsotakis, D. [4 ]
机构
[1] Univ Savoie, LAMA UMR 5127, CNRS, F-73376 Le Bourget Du Lac, France
[2] Univ Crete, Dept Appl Math, Iraklion 71409, Greece
[3] FORTH, IACM, Iraklion 71110, Greece
[4] Univ Minnesota, Inst Math & Applicat, Minneapolis, MN 55455 USA
关键词
finite volume method; nonlinear dispersive waves; unidirectional propagation; solitary waves; water waves; HYPERBOLIC CONSERVATION-LAWS; DISCONTINUOUS GALERKIN METHODS; TIME DISCRETIZATION METHODS; KDV-TYPE EQUATIONS; BOUSSINESQ EQUATIONS; LONG WAVES; NONOSCILLATORY SCHEMES; DIFFERENTIAL-EQUATIONS; NUMERICAL-SOLUTION; 2-WAY PROPAGATION;
D O I
10.1002/fld.3681
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We extend the framework of the finite volume method to dispersive unidirectional water wave propagation in one space dimension. In particular, we consider a KdVBBM-type equation. Explicit and implicitexplicit RungeKutta-type methods are used for time discretizations. The fully discrete schemes are validated by direct comparisons to analytic solutions. Invariants' conservation properties are also studied. Main applications include important nonlinear phenomena such as dispersive shock wave formation, solitary waves, and their various interactions. Copyright (C) 2012 John Wiley & Sons, Ltd.
引用
收藏
页码:717 / 736
页数:20
相关论文
共 50 条
[1]   Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations [J].
Ascher, UM ;
Ruuth, SJ ;
Spiteri, RJ .
APPLIED NUMERICAL MATHEMATICS, 1997, 25 (2-3) :151-167
[2]   A high-order Petrov-Galerkin finite element method for the classical Boussinesq wave model [J].
Avilez-Valente, Paulo ;
Seabra-Santos, Femando J. .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2009, 59 (09) :969-1010
[3]   On the shoreline boundary conditions for Boussinesq-type models [J].
Bellotti, G ;
Brocchini, M .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2001, 37 (04) :479-500
[4]   MODEL EQUATIONS FOR LONG WAVES IN NONLINEAR DISPERSIVE SYSTEMS [J].
BENJAMIN, TB ;
BONA, JL ;
MAHONY, JJ .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1972, 272 (1220) :47-+
[5]  
Benkhaldoun F, 2008, COMMUN COMPUT PHYS, V4, P820
[6]   A non homogeneous riemann solver for shallow water and two phase flows [J].
Benkhaldoun, Fayssal ;
Quivy, Laure .
FLOW TURBULENCE AND COMBUSTION, 2006, 76 (04) :391-402
[7]   Numerical solution of KdV-KdV systems of Boussinesq equations - I. The numerical scheme and generalized solitary waves [J].
Bona, J. L. ;
Dougalis, V. A. ;
Mitsotakis, D. E. .
MATHEMATICS AND COMPUTERS IN SIMULATION, 2007, 74 (2-3) :214-228
[8]   Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media. 1: Derivation and linear theory [J].
Bona, JL ;
Chen, M ;
Saut, JC .
JOURNAL OF NONLINEAR SCIENCE, 2002, 12 (04) :283-318
[9]   AN INITIAL-VALUE AND BOUNDARY-VALUE PROBLEM FOR A MODEL EQUATION FOR PROPAGATION OF LONG WAVES [J].
BONA, JL ;
DOUGALIS, VA .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1980, 75 (02) :503-522
[10]   NUMERICAL SCHEMES FOR A MODEL FOR NONLINEAR DISPERSIVE WAVES [J].
BONA, JL ;
PRITCHARD, WG ;
SCOTT, LR .
JOURNAL OF COMPUTATIONAL PHYSICS, 1985, 60 (02) :167-186