Common fixed point theorems on Branciari metric spaces via simulation functions

被引:0
作者
Lakzian, Hossein [1 ]
Chanda, Ankush [2 ]
Aydi, Hassen [3 ]
机构
[1] Payame Noor Univ, Dept Math, Tehran, Iran
[2] Natl Inst Technol Durgapur, Dept Math, Durgapur, India
[3] Univ Sousse, Inst Super Informat & Tech Commun, Sousse, Tunisia
来源
INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS | 2020年 / 11卷 / 01期
关键词
Fixed point; simulation functions; Branciari metric space; alpha-admissible functions; CONTRACTIVE MAPPINGS;
D O I
10.22075/ijnaa.2020.17945.1978
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we secure couple of exciting common fixed point theorems via simulation functions in Branciari metric spaces context. These results improve, complement and generalize the recent fixed point theorems of Aydi et al. [Results Math., 71(2017), no. 1-2, 73-92] and few others also. Our findings are aptly endorsed by some interesting non-trivial examples which also illustrate the usefulness of these generalizations. Finally, we discuss an application of our conceived results to a certain type of integral equations.
引用
收藏
页码:395 / 411
页数:17
相关论文
共 29 条
[1]  
Alharbi N, 2018, J MATH ANAL, V9, P47
[2]  
Ansari AH, 2018, COMMUN MATH APPL, V9, P109
[3]  
Aydi H, 2018, J MATH ANAL, V9, P10
[4]   On Common Fixed Points in the Context of Brianciari Metric Spaces [J].
Aydi, Hassen ;
Karapinar, Erdal ;
Zhang, Dong .
RESULTS IN MATHEMATICS, 2017, 71 (1-2) :73-92
[5]   Fixed points for generalized (α, ψ)-contractions on generalized metric spaces [J].
Aydi, Hassen ;
Karapinar, Erdal ;
Samet, Bessem .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2014,
[6]  
Banach S., 1922, Fundamenta Mathematicae, V3, P133, DOI DOI 10.4064/FM-3-1-133-181
[7]  
Branciari A, 2000, PUBL MATH-DEBRECEN, V57, P31
[8]  
Chanda A., 2017, Indian J. Math, V59, P107
[9]   Simulation functions: a survey of recent results [J].
Chanda, Ankush ;
Dey, Lakshmi Kanta ;
Radenovic, Stojan .
REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2019, 113 (03) :2923-2957
[10]   Simulation Functions and Geraghty Type Results [J].
Chandok, Sumit ;
Chanda, Ankush ;
Dey, Lakshmi Kanta ;
Pavlovic, Mirjana ;
Radenovic, Stojan .
BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2021, 39 (01) :35-50