Implicitly Constrained Semi-supervised Least Squares Classification

被引:20
作者
Krijthe, Jesse H. [1 ,2 ]
Loog, Marco [1 ,3 ]
机构
[1] Delft Univ Technol, Pattern Recognit Lab, Delft, Netherlands
[2] Leiden Univ, Med Ctr, Dept Mol Epidemiol, Leiden, Netherlands
[3] Univ Copenhagen, Image Grp, Copenhagen, Denmark
来源
ADVANCES IN INTELLIGENT DATA ANALYSIS XIV | 2015年 / 9385卷
关键词
D O I
10.1007/978-3-319-24465-5_14
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We introduce a novel semi-supervised version of the least squares classifier. This implicitly constrained least squares (ICLS) classifier minimizes the squared loss on the labeled data among the set of parameters implied by all possible labelings of the unlabeled data. Unlike other discriminative semi-supervised methods, our approach does not introduce explicit additional assumptions into the objective function, but leverages implicit assumptions already present in the choice of the supervised least squares classifier. We show this approach can be formulated as a quadratic programming problem and its solution can be found using a simple gradient descent procedure. We prove that, in a certain way, our method never leads to performance worse than the supervised classifier. Experimental results corroborate this theoretical result in the multidimensional case on benchmark datasets, also in terms of the error rate.
引用
收藏
页码:158 / 169
页数:12
相关论文
共 23 条
[1]  
[Anonymous], 2009, IEEE Trans. Neural Networks
[2]  
[Anonymous], 2006, SEMISUPERVISED LEARN, DOI DOI 10.7551/MITPRESS/9780262033589.003.0004
[3]  
Bache K, 2013, UCI machine learning repository
[4]  
Bennett KP, 1999, ADV NEUR IN, V11, P368
[5]   Large-Scale Machine Learning with Stochastic Gradient Descent [J].
Bottou, Leon .
COMPSTAT'2010: 19TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL STATISTICS, 2010, :177-186
[6]   A LIMITED MEMORY ALGORITHM FOR BOUND CONSTRAINED OPTIMIZATION [J].
BYRD, RH ;
LU, PH ;
NOCEDAL, J ;
ZHU, CY .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1995, 16 (05) :1190-1208
[7]  
Cozman F. G., 2003, P 20 INT C MACH LEAR
[8]  
Friedman J., 2001, ELEMENTS STAT LEARNI, VVolume 1, DOI 10.1007/978-0-387-84858-7
[9]   Implicitly Constrained Semi-Supervised Linear Discriminant Analysis [J].
Krijthe, Jesse H. ;
Loog, Marco .
2014 22ND INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2014, :3762-3767
[10]   Towards Making Unlabeled Data Never Hurt [J].
Li, Yu-Feng ;
Zhou, Zhi-Hua .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2015, 37 (01) :175-188