On convergence of SOR methods for nonsmooth equations

被引:4
作者
Chen, XJ [1 ]
机构
[1] Shimane Univ, Dept Math & Comp Sci, Matsue, Shimane 6908504, Japan
关键词
nonlinear SOR methods; convergence; non-smooth analysis;
D O I
10.1002/nla.256
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the choice of relaxation parameters omega for convergence of the SOR Newton method and the SOR method for the system of equations F(.x) = 0 in a unified framework, where F is strongly monotone, locally Lipschitz continuous but not necessarily differentiable. Applications to non-smooth Dirichlet problems are discussed. Copyright (C) 2001 John Wiley Sons, Ltd.
引用
收藏
页码:81 / 92
页数:12
相关论文
共 16 条
[1]   CONVERGENCE OF THE SSOR-METHOD FOR NONLINEAR-SYSTEMS OF SIMULTANEOUS-EQUATIONS [J].
ALEFELD, G ;
VOLKMANN, P .
NUMERISCHE MATHEMATIK, 1986, 50 (01) :111-121
[2]  
[Anonymous], 1969, COLLECTION MATRICES
[3]   NONLINEAR SUCCESSIVE OVER-RELAXATION [J].
BREWSTER, ME ;
KANNAN, R .
NUMERISCHE MATHEMATIK, 1984, 44 (02) :309-315
[4]   On preconditioned Uzawa methods and SOR methods for saddle-point problems [J].
Chen, XJ .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1998, 100 (02) :207-224
[5]  
CIARLET P.G, 1988, INTRO NUMERICAL LINE
[6]  
Clarke, 1990, OPTIMIZATION NONSMOO, DOI DOI 10.1137/1.9781611971309
[7]  
ISHIHARA K, 1998, JAPAN J IND APPL MAT, V15, P135
[8]  
ISHIHARA K, 1997, JAPAN J IND APPL MAT, V14, P99, DOI DOI 10.1007/BF03167313
[9]   LOCAL UNIQUENESS AND CONVERGENCE OF ITERATIVE METHODS FOR NONSMOOTH VARIATIONAL-INEQUALITIES [J].
JIANG, HY ;
QI, LQ .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1995, 196 (01) :314-331
[10]  
KIKUCHI F, 1981, THEOR APPL MECH, V29, P319