The one-phase Hele-Shaw problem with singularities

被引:8
作者
Jerison, D [1 ]
Kim, I
机构
[1] MIT, Dept Math, Cambridge, MA 02139 USA
[2] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90024 USA
基金
美国国家科学基金会;
关键词
free boundary; singularity analysis; viscosity solutions; Hele-Shaw flow;
D O I
10.1007/BF02922248
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article we analyze viscosity solutions of the one phase Hele-Shaw problem in the plane and the corresponding free boundaries near a singularity We find, up to order of magnitude, the speed at which the free boundary moves starting from a wedge, cusp, or finger-type singularity. Maximum principle-type arguments play a key role in the analysis.
引用
收藏
页码:641 / 667
页数:27
相关论文
共 9 条
[1]   Regularity of the free boundary in parabolic phase-transition problems [J].
Athanasopoulos, I ;
Caffarelli, L ;
Salsa, S .
ACTA MATHEMATICA, 1996, 176 (02) :245-282
[2]  
Caffarelli L. A., 1987, Rev. Mat. Iberoamericana, V3, P139
[4]  
Dahlberg B. E. J., 1978, P S PURE MATH 35, P313
[5]   CUSP DEVELOPMENT IN HELE-SHAW FLOW WITH A FREE-SURFACE [J].
HOWISON, SD .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1986, 46 (01) :20-26
[6]  
KIM I, UNPUB LONG TIME REGU
[7]  
KIM I, IN PRESS J DIFFERENT
[8]   Uniqueness and existence results on the Hele-Shaw and the Stefan problems [J].
Kim, IC .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2003, 168 (04) :299-328
[9]  
King J.R., 1995, European J. Appl. Math, V6, P455