Finite element convergence for the Joule heating problem with mixed boundary conditions

被引:6
|
作者
Jensen, Max [1 ]
Malqvist, Axel [2 ]
机构
[1] Univ Durham, Dept Math Sci, Durham, England
[2] Uppsala Univ, Dept Informat Technol, Uppsala, Sweden
关键词
Joule heating problem; Thermistors; A posteriori error analysis; A priori error analysis; Finite element method; THERMISTOR PROBLEM; BESOV-SPACES; EXISTENCE; UNIQUENESS; EQUATION; SOBOLEV;
D O I
10.1007/s10543-012-0406-0
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We prove strong convergence of conforming finite element approximations to the stationary Joule heating problem with mixed boundary conditions on Lipschitz domains in three spatial dimensions. We show optimal global regularity estimates on creased domains and prove a priori and a posteriori bounds for shape regular meshes.
引用
收藏
页码:475 / 496
页数:22
相关论文
共 50 条