Lp spaces of the von Neumann algebra of a measured groupoid

被引:0
作者
Bolvin, Patricia [1 ]
机构
[1] Univ Orleans, MAPMO, F-45067 Orleans 2, France
关键词
D O I
10.1016/j.crma.2008.07.020
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Hausdorff-Young inequality is well known for the Fourier transform in R-n. More recently, Hausdorff-Young inequalities were established for unimodular groups (Kunze, 1958) and non-unimodular groups (Terp, 1980). A version was also given for X x X by Russo (1977), where X denotes a measured space. In this Note, we first study the L-P-spaces of the von Neumann algebra of a groupoid, and propose identifications of some of them as function spaces. Using interpolation, we then give a Hausdorff-Young inequality for groupoids. To cite this article: P Boivin, C. R. Acad. Sci. Paris, Ser. I 346 (2008). (C) 2008 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:969 / 974
页数:6
相关论文
共 50 条
  • [21] GROUPOID NORMALISERS OF TENSOR PRODUCTS: INFINITE VON NEUMANN ALGEBRAS
    Fang, Junsheng
    Smith, Roger R.
    White, Stuart
    JOURNAL OF OPERATOR THEORY, 2013, 69 (02) : 545 - 570
  • [22] Frechet differentiability of the norm of Lp-spaces associated with arbitrary von Neumann algebras
    Potapov, Denis
    Sukochev, Fedor
    Tomskova, Anna
    Zanin, Dmitriy
    COMPTES RENDUS MATHEMATIQUE, 2014, 352 (11) : 923 - 927
  • [23] FRECHET DIFFERENTIABILITY OF THE NORM OF Lp-SPACES ASSOCIATED WITH ARBITRARY VON NEUMANN ALGEBRAS
    Potapov, D.
    Sukochev, F.
    Tomskova, A.
    Zanin, D.
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 371 (11) : 7493 - 7532
  • [24] The paraunitary group of a von Neumann algebra
    Dietzel, Carsten
    Rump, Wolfgang
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2022, 54 (04) : 1220 - 1231
  • [25] On the geometry of von Neumann algebra preduals
    Miguel Martín
    Yoshimichi Ueda
    Positivity, 2014, 18 : 519 - 530
  • [26] VECTORS TOTALIZING A VON NEUMANN ALGEBRA
    DIXMIER, J
    MARECHAL, O
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1971, 22 (01) : 44 - &
  • [27] On the geometry of von Neumann algebra preduals
    Martin, Miguel
    Ueda, Yoshimichi
    POSITIVITY, 2014, 18 (03) : 519 - 530
  • [28] The order topology for a von Neumann algebra
    Chetcuti, Emmanuel
    Hamhalter, Jan
    Weber, Hans
    STUDIA MATHEMATICA, 2015, 230 (02) : 95 - 120
  • [29] An example of a solid von Neumann algebra
    Ozawa, Narutaka
    HOKKAIDO MATHEMATICAL JOURNAL, 2009, 38 (03) : 557 - 561
  • [30] Ideal spaces of measurable operators affiliated to a semifinite von Neumann algebra. II
    Bikchentaev, A. M.
    Darwish, M. F.
    Muratov, M. A.
    ANNALS OF FUNCTIONAL ANALYSIS, 2024, 15 (03)