ON A FREE PISTON PROBLEM FOR STOKES AND NAVIER-STOKES EQUATIONS

被引:4
作者
Muha, Boris [1 ]
Tutek, Zvonimir [1 ]
机构
[1] Univ Zagreb, Dept Math, Zagreb 10000, Croatia
关键词
Navier-Stokes equations; free piston problem; fluid-rigid body interaction; BOUNDARY-VALUE-PROBLEMS; POLYHEDRAL DOMAINS; VISCOUS-FLUID; SYSTEM; PIPES;
D O I
10.3336/gm.47.2.12
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Our goal is to model and analyze a stationary fluid flow through the junction of two pipes in the gravity field. Inside 'vertical' pipe there is a heavy piston which can freely move along the pipe. We are interested in the equilibrium position of the piston in dependence on geometry of junction. Fluid is modeled with the Navier-Stokes equations and the piston is modeled as a rigid body. We formulate corresponding boundary value problem and prove an existence result. The problem is nonlinear even in case of the Stokes equations for fluid flow; we prove non-uniqueness of solutions and illustrate it with some numerical examples. Furthermore, derivation and analysis of the linearized problem are presented.
引用
收藏
页码:381 / 400
页数:20
相关论文
共 20 条
[1]  
[Anonymous], 1994, An introduction to the mathematical theory of the Navier-Stokes equations
[2]   Non-standard Stokes and Navier-Stokes problems: existence and regularity in stationary case [J].
Bernard, JM .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2002, 25 (08) :627-661
[3]   Artificial boundary conditions of pressure type for viscous flows in a system of pipes [J].
Blazy, Stephan ;
Nazarov, Serguei ;
Specovius-Neugebauer, Maria .
JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2007, 9 (01) :1-33
[4]   Motion of a rigid body in a viscous fluid [J].
Conca, C ;
San Martín, J ;
Tucsnak, M .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1999, 328 (06) :473-478
[5]  
Conca C., 1994, Japan. J. Math. (N.S.), V20, P279, DOI DOI 10.4099/MATH1924.20.279
[6]  
D'Acunto B, 1999, REND ACCAD SCI FIS, V66, P75
[7]  
Dautray R., 1990, Mathematical Analysis and Numerical Methods for Science and Technology, V3
[8]  
Desjardins B, 2000, COMMUN PART DIFF EQ, V25, P1399
[9]  
Galdi G.P., 1994, An Introduction to the Mathematical Theory of the Navier-Stokes Equations, VII
[10]  
Galdi G.P., 2008, MATH PROBLEMS CLASSI, P121, DOI [10.1007/978-3-7643-7806-6_3, DOI 10.1007/978-3-7643-7806-6_3]