On optimal low rank Tucker approximation for tensors: the case for an adjustable core size

被引:11
作者
Chen, Bilian [1 ]
Li, Zhening [2 ]
Zhang, Shuzhong [3 ]
机构
[1] Xiamen Univ, Dept Automat, Xiamen 361005, Peoples R China
[2] Univ Portsmouth, Dept Math, Portsmouth PO1 3HF, Hants, England
[3] Univ Minnesota, Dept Ind & Syst Engn, Minneapolis, MN 55455 USA
基金
美国国家科学基金会; 上海市自然科学基金;
关键词
Multiway array; Tucker decomposition; Low-rank approximation; Maximum block improvement; PRINCIPAL COMPONENT ANALYSIS; EFFICIENT METHOD; DECOMPOSITIONS; FRAMEWORK; NUMBERS;
D O I
10.1007/s10898-014-0231-x
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Approximating high order tensors by low Tucker-rank tensors have applications in psychometrics, chemometrics, computer vision, biomedical informatics, among others. Traditionally, solution methods for finding a low Tucker-rank approximation presume that the size of the core tensor is specified in advance, which may not be a realistic assumption in many applications. In this paper we propose a new computational model where the configuration and the size of the core become a part of the decisions to be optimized. Our approach is based on the so-called maximum block improvement method for non-convex block optimization. Numerical tests on various real data sets from gene expression analysis and image compression are reported, which show promising performances of the proposed algorithms.
引用
收藏
页码:811 / 832
页数:22
相关论文
共 44 条
[11]   Selecting among three-mode principal component models of different types and complexities: A numerical convex hull based method [J].
Ceulemans, E ;
Kiers, HAL .
BRITISH JOURNAL OF MATHEMATICAL & STATISTICAL PSYCHOLOGY, 2006, 59 :133-150
[12]   Discriminating between strong and weak structures in three-mode principal component analysis [J].
Ceulemans, Eva ;
Kiers, Henk A. L. .
BRITISH JOURNAL OF MATHEMATICAL & STATISTICAL PSYCHOLOGY, 2009, 62 :601-620
[13]  
Chen B., 2012, THESIS CHINESE U HON
[14]   MAXIMUM BLOCK IMPROVEMENT AND POLYNOMIAL OPTIMIZATION [J].
Chen, Bilian ;
He, Simai ;
Li, Zhening ;
Zhang, Shuzhong .
SIAM JOURNAL ON OPTIMIZATION, 2012, 22 (01) :87-107
[15]   A multilinear singular value decomposition [J].
De Lathauwer, L ;
De Moor, B ;
Vandewalle, J .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2000, 21 (04) :1253-1278
[16]   On the best rank-1 and rank-(R1,R2,...,RN) approximation of higher-order tensors [J].
De Lathauwer, L ;
De Moor, B ;
Vandewalle, J .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2000, 21 (04) :1324-1342
[17]   DECOMPOSITIONS OF A HIGHER-ORDER TENSOR IN BLOCK TERMS-PART III: ALTERNATING LEAST SQUARES ALGORITHMS [J].
De Lathauwer, Lieven ;
Nion, Dimitri .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2008, 30 (03) :1067-1083
[18]   A NEWTON-GRASSMANN METHOD FOR COMPUTING THE BEST MULTILINEAR RANK-(r1, r2, r3) APPROXIMATION OF A TENSOR [J].
Elden, Lars ;
Savas, Berkant .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2009, 31 (02) :248-271
[19]  
Harshman R., 1970, UCLA WORKING PAPERS, V16, P1, DOI DOI 10.1134/S0036023613040165
[20]   Efficient method for Tucker3 model selection [J].
He, Z. ;
Cichocki, A. ;
Xie, S. .
ELECTRONICS LETTERS, 2009, 45 (15) :805-806