On Picard groups of blocks of finite groups

被引:17
作者
Boltje, Robert [1 ]
Kessar, Radha [2 ]
Linckelmann, Markus [2 ]
机构
[1] Univ Calif Santa Cruz, Dept Math, Santa Cruz, CA 95064 USA
[2] City Univ London, Dept Math, London EC1V 0HB, England
基金
英国工程与自然科学研究理事会; 美国国家科学基金会;
关键词
Blocks of finite group algebras; Picard group; Dade group; STABLE EQUIVALENCES; RIGIDITY; ALGEBRAS; MODULES;
D O I
10.1016/j.jalgebra.2019.02.045
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that the subgroup of the Picard group of a p-block of a finite group given by bimodules with endopermutation sources modulo the automorphism group of a source algebra is determined locally in terms of the fusion system on a defect group. We show that the Picard group of a block over a complete discrete valuation ring O of characteristic zero with an algebraic closure k of F-p as residue field is a colimit of finite Picard groups of blocks over p-adic subrings of O. We apply the results to blocks with an abelian defect group and Frobenius inertial quotient, and specialise this further to blocks with cyclic or Klein four defect groups. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:70 / 101
页数:32
相关论文
共 36 条
[1]   Reduced, tame and exotic fusion systems [J].
Andersen, Kasper K. S. ;
Oliver, Bob ;
Ventura, Joana .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2012, 105 :87-152
[2]   Bisets as Categories and Tensor Product of Induced Bimodules [J].
Bouc, Serge .
APPLIED CATEGORICAL STRUCTURES, 2010, 18 (05) :517-521
[3]  
Brauer R, 1944, ANN MATH, V42, P936
[4]   Self-equivalences of stable module categories [J].
Carlson, JF ;
Rouquier, R .
MATHEMATISCHE ZEITSCHRIFT, 2000, 233 (01) :165-178
[5]  
Coleman D.B., 1964, Proc. Amer. Math. Soc., V5, P511
[6]   The structure of blocks with a Klein four defect group [J].
Craven, David A. ;
Eaton, Charles W. ;
Kessar, Radha ;
Linckelmann, Markus .
MATHEMATISCHE ZEITSCHRIFT, 2011, 268 (1-2) :441-476
[7]  
Curtis C.W., 1981, Pure and Applied Mathematics, V1
[8]  
Curtis Charles W., 1987, METHODS REPRESENTATI, VII
[9]   ENDO-PERMUTATION MODULES OVER P-GROUPS-II [J].
DADE, EC .
ANNALS OF MATHEMATICS, 1978, 108 (02) :317-346
[10]  
Gorenstein D., 1980, Finite Groups