Where Nanosensors Meet Machine Learning: Prospects and Challenges in Detecting Disease X

被引:47
作者
Leong, Yong Xiang [1 ]
Tan, Emily Xi [1 ]
Leong, Shi Xuan [1 ]
Koh, Charlynn Sher Lin [1 ]
Nguyen, Lam Bang Thanh [1 ]
Chen, Jaslyn Ru Ting [1 ]
Xia, Kelin [2 ]
Ling, Xing Yi [1 ]
机构
[1] Nanyang Technol Univ, Sch Chem Chem Engn & Biotechnol, Div Chem & Biol Chem, Singapore 637371, Singapore
[2] Nanyang Technol Univ, Sch Phys & Math Sci, Div Math Sci, Singapore 637371, Singapore
基金
新加坡国家研究基金会;
关键词
Nanosensors; Nanomaterials; Disease X; Machine learning; Biomarker detection; ARTIFICIAL NEURAL-NETWORKS;
D O I
10.1021/acsnano.2c05731
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Disease X is a hypothetical unknown disease that has the potential to cause an epidemic or pandemic outbreak in the future. Nanosensors are attractive portable devices that can swiftly screen disease biomarkers on site, reducing the reliance on laboratory-based analyses. However, conventional data analytics limit the progress of nanosensor research. In this Perspective, we highlight the integral role of machine learning (ML) algorithms in advancing nanosensing strategies toward Disease X detection. We first summarize recent progress in utilizing ML algorithms for the smart design and fabrication of custom nanosensor platforms as well as realizing rapid on-site prediction of infection statuses. Subsequently, we discuss promising prospects in further harnessing the potential of ML algorithms in other aspects of nanosensor development and biomarker detection.
引用
收藏
页码:13279 / 13293
页数:15
相关论文
共 124 条
[61]  
Liu Yang., 2019, INFORM SYST RES, DOI [DOI 10.48550/arXiv.1907.11692, DOI 10.48550/ARXIV.1907.11692, 10.48550/arXiv.1907.11692]
[62]   LC-MS-based metabonomics analysis [J].
Lu, Xin ;
Zhao, Xinjie ;
Bai, Changmin ;
Zhao, Chunxia ;
Lu, Guo ;
Xu, Guomang .
JOURNAL OF CHROMATOGRAPHY B-ANALYTICAL TECHNOLOGIES IN THE BIOMEDICAL AND LIFE SCIENCES, 2008, 866 (1-2) :64-76
[63]  
Luo Y, 2022, ANGEW CHEM INT EDIT, V61, DOI [10.1002/ange.202200242, 10.1002/anie.202200242]
[64]   Machine-Learning-Driven Surface-Enhanced Raman Scattering Optophysiology Reveals Multiplexed Metabolite Gradients Near Cells [J].
Lussier, Felix ;
Missirlis, Dimitris ;
Spatz, Joachim P. ;
Masson, Jean-Francois .
ACS NANO, 2019, 13 (02) :1403-1411
[65]   A tutorial on support vector machine-based methods for classification problems in chemometrics [J].
Luts, Jan ;
Ojeda, Fabian ;
Van de Plas, Raf ;
De Moor, Bart ;
Van Huffel, Sabine ;
Suykens, Johan A. K. .
ANALYTICA CHIMICA ACTA, 2010, 665 (02) :129-145
[66]   Deep-Learning-Enabled On-Demand Design of Chiral Metamaterials [J].
Ma, Wei ;
Cheng, Feng ;
Liu, Yongmin .
ACS NANO, 2018, 12 (06) :6326-6334
[67]   Non-invasive early detection of acute transplant rejection via nanosensors of granzyme B activity [J].
Mac, Quoc D. ;
Mathews, Dave, V ;
Kahla, Justin A. ;
Stoffers, Claire M. ;
Delmas, Olivia M. ;
Holt, Brandon Alexander ;
Adams, Andrew B. ;
Kwong, Gabriel A. .
NATURE BIOMEDICAL ENGINEERING, 2019, 3 (04) :281-291
[68]   Plasmonic nanostructure design and characterization via Deep Learning [J].
Malkiel, Itzik ;
Mrejen, Michael ;
Nagler, Achiya ;
Arieli, Uri ;
Wolf, Lior ;
Suchowski, Haim .
LIGHT-SCIENCE & APPLICATIONS, 2018, 7
[69]   Relationships between Distortions of Inorganic Framework and Band Gap of Layered Hybrid Halide Perovskites [J].
Marchenko, Ekaterina, I ;
Korolev, Vadim V. ;
Fateev, Sergey A. ;
Mitrofanov, Artem ;
Eremin, Nikolay N. ;
Goodilin, Eugene A. ;
Tarasov, Alexey B. .
CHEMISTRY OF MATERIALS, 2021, 33 (18) :7518-7526
[70]   Multiple Particle Tracking Detects Changes in Brain Extracellular Matrix and Predicts Neurodevelopmental Age [J].
McKenna, Michael ;
Shackelford, David ;
Pontes, Hugo Ferreira ;
Ball, Brendan ;
Nance, Elizabeth .
ACS NANO, 2021, 15 (05) :8559-8573