Where Nanosensors Meet Machine Learning: Prospects and Challenges in Detecting Disease X

被引:45
作者
Leong, Yong Xiang [1 ]
Tan, Emily Xi [1 ]
Leong, Shi Xuan [1 ]
Koh, Charlynn Sher Lin [1 ]
Nguyen, Lam Bang Thanh [1 ]
Chen, Jaslyn Ru Ting [1 ]
Xia, Kelin [2 ]
Ling, Xing Yi [1 ]
机构
[1] Nanyang Technol Univ, Sch Chem Chem Engn & Biotechnol, Div Chem & Biol Chem, Singapore 637371, Singapore
[2] Nanyang Technol Univ, Sch Phys & Math Sci, Div Math Sci, Singapore 637371, Singapore
基金
新加坡国家研究基金会;
关键词
Nanosensors; Nanomaterials; Disease X; Machine learning; Biomarker detection; ARTIFICIAL NEURAL-NETWORKS;
D O I
10.1021/acsnano.2c05731
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Disease X is a hypothetical unknown disease that has the potential to cause an epidemic or pandemic outbreak in the future. Nanosensors are attractive portable devices that can swiftly screen disease biomarkers on site, reducing the reliance on laboratory-based analyses. However, conventional data analytics limit the progress of nanosensor research. In this Perspective, we highlight the integral role of machine learning (ML) algorithms in advancing nanosensing strategies toward Disease X detection. We first summarize recent progress in utilizing ML algorithms for the smart design and fabrication of custom nanosensor platforms as well as realizing rapid on-site prediction of infection statuses. Subsequently, we discuss promising prospects in further harnessing the potential of ML algorithms in other aspects of nanosensor development and biomarker detection.
引用
收藏
页码:13279 / 13293
页数:15
相关论文
共 124 条
[1]   Principal component analysis [J].
Abdi, Herve ;
Williams, Lynne J. .
WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2010, 2 (04) :433-459
[2]   Partial least squares regression and projection on latent structure regression (PLS Regression) [J].
Abdi, Herve .
WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2010, 2 (01) :97-106
[3]   Role of Pore Chemistry and Topology in the CO2 Capture Capabilities of MOFs: From Molecular Simulation to Machine Learning [J].
Anderson, Ryther ;
Rodgers, Jacob ;
Argueta, Edwin ;
Biong, Achay ;
Gomez-Gualdron, Diego A. .
CHEMISTRY OF MATERIALS, 2018, 30 (18) :6325-6337
[4]  
Arduini F, 2020, HANDBOOK OF NANOMATERIALS IN ANALYTICAL CHEMISTRY: MODERN TRENDS IN ANALYSIS, P329, DOI 10.1016/B978-0-12-816699-4.00013-X
[5]   Computational Sensing Using Low-Cost and Mobile Plasmonic Readers Designed by Machine Learning [J].
Ballard, Zachary S. ;
Shir, Daniel ;
Bhardwaj, Aashish ;
Bazargan, Sarah ;
Sathianathan, Shyama ;
Ozcan, Aydogan .
ACS NANO, 2017, 11 (02) :2266-2274
[6]   Prediction of water stability of metal-organic frameworks using machine learning [J].
Batra, Rohit ;
Chen, Carmen ;
Evans, Tania G. ;
Walton, Krista S. ;
Ramprasad, Rampi .
NATURE MACHINE INTELLIGENCE, 2020, 2 (11) :704-+
[7]   Review of recent developments in GC-MS approaches to metabolomics-based research [J].
Beale, David J. ;
Pinu, Farhana R. ;
Kouremenos, Konstantinos A. ;
Poojary, Mahesha M. ;
Narayana, Vinod K. ;
Boughton, Berin A. ;
Kanojia, Komal ;
Dayalan, Saravanan ;
Jones, Oliver A. H. ;
Dias, Daniel A. .
METABOLOMICS, 2018, 14 (11)
[8]   Big Data and Machine Learning in Health Care [J].
Beam, Andrew L. ;
Kohane, Isaac S. .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2018, 319 (13) :1317-1318
[9]   Dimensionality reduction for visualizing single-cell data using UMAP [J].
Becht, Etienne ;
McInnes, Leland ;
Healy, John ;
Dutertre, Charles-Antoine ;
Kwok, Immanuel W. H. ;
Ng, Lai Guan ;
Ginhoux, Florent ;
Newell, Evan W. .
NATURE BIOTECHNOLOGY, 2019, 37 (01) :38-+
[10]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32