Extracellular Calcium Modulates Chondrogenic and Osteogenic Differentiation of Human Adipose-Derived Stem Cells: A Novel Approach for Osteochondral Tissue Engineering Using a Single Stem Cell Source

被引:0
作者
Mellor, Liliana F. [1 ]
Mohiti-Asli, Mahsa [1 ]
Williams, John [1 ]
Kannan, Arthi [1 ]
Dent, Morgan R. [1 ]
Guilak, Farshid [2 ,3 ]
Loboa, Elizabeth G. [1 ,4 ]
机构
[1] N Carolina State Univ, Univ North Carolina Chapel Hill, Joint Dept Biomed Engn, Raleigh, NC 27695 USA
[2] Duke Univ, Med Ctr, Dept Orthoped Surg, Durham, NC USA
[3] Duke Univ, Med Ctr, Dept Biomed Engn, Durham, NC USA
[4] N Carolina State Univ, Dept Mat Sci & Engn, Raleigh, NC 27695 USA
关键词
BIODEGRADABLE HYDROGEL COMPOSITES; SENSING RECEPTOR; BONE-MARROW; ELECTROSPUN SCAFFOLDS; CARTILAGE REPAIR; REGENERATION; EXPRESSION; DELIVERY; POLYCAPROLACTONE; MINERALIZATION;
D O I
10.1089/ten.tea.2014.0572
中图分类号
Q813 [细胞工程];
学科分类号
摘要
We have previously shown that elevating extracellular calcium from a concentration of 1.8 to 8 mM accelerates and increases human adipose-derived stem cell (hASC) osteogenic differentiation and cell-mediated calcium accretion, even in the absence of any other soluble osteogenic factors in the culture medium. However, the effects of elevated calcium on hASC chondrogenic differentiation have not been reported. The goal of this study was to determine the effects of varied calcium concentrations on chondrogenic differentiation of hASC. We hypothesized that exposure to elevated extracellular calcium (8 mM concentration) in a chondrogenic differentiation medium (CDM) would inhibit chondrogenesis of hASC when compared to basal calcium (1.8 mM concentration) controls. We further hypothesized that a full osteochondral construct could be engineered by controlling local release of calcium to induce site-specific chondrogenesis and osteogenesis using only hASC as the cell source. Human ASC was cultured as micromass pellets in CDM containing transforming growth factor-beta 1 and bone morphogenetic protein 6 for 28 days at extracellular calcium concentrations of either 1.8 mM (basal) or 8 mM (elevated). Our findings indicated that elevated calcium induced osteogenesis and inhibited chondrogenesis in hASC. Based on these findings, stacked polylactic acid nanofibrous scaffolds containing either 0% or 20% tricalcium phosphate (TCP) nanoparticles were electrospun and tested for site-specific chondrogenesis and osteogenesis. Histological assays confirmed that human ASC differentiated locally to generate calcified tissue in layers containing 20% TCP, and cartilage in the layers with no TCP when cultured in CDM. This is the first study to report the effects of elevated calcium on chondrogenic differentiation of hASC, and to develop osteochondral nanofibrous scaffolds using a single cell source and controlled calcium release to induce site-specific differentiation. This approach holds great promise for osteochondral tissue engineering using a single cell source (hASC) and single scaffold.
引用
收藏
页码:2323 / 2333
页数:11
相关论文
共 54 条
[1]   Three-dimensional osteogenic and chondrogenic systems to model osteochondral physiology and degenerative joint diseases [J].
Alexander, Peter G. ;
Gottardi, Riccardo ;
Lin, Hang ;
Lozito, Thomas P. ;
Tuan, Rocky S. .
EXPERIMENTAL BIOLOGY AND MEDICINE, 2014, 239 (09) :1080-1095
[2]   Chondrocyte Death in Mechanically Injured Articular Cartilage-The Influence of Extracellular Calcium [J].
Amin, Anish K. ;
Huntley, James S. ;
Bush, Peter G. ;
Simpson, Hamish R. W. ;
Hall, Andrew C. .
JOURNAL OF ORTHOPAEDIC RESEARCH, 2009, 27 (06) :778-784
[3]   Calcium ions promote osteogenic differentiation and mineralization of human dental pulp cells: implications for pulp capping materials [J].
An, Shaofeng ;
Gao, Yan ;
Ling, Junqi ;
Wei, Xi ;
Xiao, Yin .
JOURNAL OF MATERIALS SCIENCE-MATERIALS IN MEDICINE, 2012, 23 (03) :789-795
[4]   Release Profiles of Tricalcium Phosphate Nanoparticles from Poly(L-lactic acid) Electrospun Scaffolds with Single Component, Core-Sheath, or Porous Fiber Morphologies: Effects on hASC Viability and Osteogenic Differentiation [J].
Asli, Mahsa Mohiti ;
Pourdeyhimi, Behnam ;
Loboa, Elizabeth G. .
MACROMOLECULAR BIOSCIENCE, 2012, 12 (07) :893-900
[5]   Isolation of human mesenchymal stem cells from bone and adipose tissue [J].
Bernacki, Susan H. ;
Wall, Michelle E. ;
Loboa, Elizabeth G. .
STEM CELL CULTURE, 2008, 86 :257-278
[6]  
Bodle JC, 2014, TISSUE ENG PART C-ME, V20, P972, DOI [10.1089/ten.tec.2013.0683, 10.1089/ten.TEC.2013.0683]
[7]  
Brown EM, 1998, RECENT PROG HORM RES, V53, P257
[8]   Technology insight: Adult stem cells in cartilage regeneration and tissue engineering [J].
Chen, Faye H. ;
Rousche, Kathleen T. ;
Tuan, Rocky S. .
NATURE CLINICAL PRACTICE RHEUMATOLOGY, 2006, 2 (07) :373-382
[9]   The Impact of Compact Layer in Biphasic Scaffold on Osteochondral Tissue Engineering [J].
Da, Hu ;
Jia, Shuai-Jun ;
Meng, Guo-Lin ;
Cheng, Jian-Hua ;
Zhou, Wei ;
Xiong, Zhuo ;
Mu, Yun-Jing ;
Liu, Jian .
PLOS ONE, 2013, 8 (01)
[10]   Regulatory mechanisms in the pathways of cartilage and bone formation [J].
de Crombrugghe, B ;
Lefebvre, W .
CURRENT OPINION IN CELL BIOLOGY, 2001, 13 (06) :721-727