Triple reverse order law for Moore-Penrose inverse of operator product

被引:0
作者
Xiong, Zhiping [1 ]
Qin, Yingying [1 ]
机构
[1] Wuyi Univ, Sch Math & Computat Sci, Hangmen 529020, Peoples R China
关键词
Moore-Penrose inverse; Reverse order law; Bounded linear operator; Operator product; Hilbert space; GENERALIZED INVERSES; CLOSED RANGE; BANACH;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, we study the reverse order law for the Moore-Penrose inverse of an operator product T1T2T3. In particular, using the matrix form of a bounded linear operator we derive some necessary and su cient conditions for the reverse order law (T1T2T3)(dagger) = (T3T2T1 dagger)-T-dagger-T-dagger. Moreover, some nite dimensional results are extended to in nite dimensional settings.
引用
收藏
页码:1347 / 1358
页数:12
相关论文
共 23 条
[1]  
Ben-Israel A, 1974, GEN INVERSE THEORY A
[2]  
Ben-Israel A., 2002, GEN INVERSE THEORY A, V2nd ed.
[3]   PSEUDO-INVERSE OF A PRODUCT [J].
BOULDIN, R .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1973, 24 (04) :489-495
[4]  
CARADUS SR, 1978, QUEENS PAPERS PURE A, V50
[5]   Operators with closed range, pseudo-inverses, and perturbation of frames for a subspace [J].
Christensen, O .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1999, 42 (01) :37-45
[6]  
Conway J.B., 1990, A Course in Functional Analysis, V96
[7]   Reverse order laws in C*-algebras [J].
Cvetkovic-Ilic, Dragana S. ;
Harte, Robin .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 434 (05) :1388-1394
[8]   Reverse order law for reflexive generalized inverses of products of matrices [J].
De Pierro, AR ;
Wei, MS .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1998, 277 (1-3) :299-311
[9]   Hartwig's triple reverse order law revisited [J].
Dincic, Nebojsa C. ;
Djordjevic, Dragan S. .
LINEAR & MULTILINEAR ALGEBRA, 2014, 62 (07) :918-924
[10]   Further results on the reverse order law for generalized inverses [J].
Djordjevic, Dragan S. .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2007, 29 (04) :1242-1246