Improved Iterative Solution of Linear Fredholm Integral Equations of Second Kind via Inverse-Free Iterative Schemes

被引:5
作者
Manuel Gutierrez, Jose [1 ]
Angel Hernandez-Veron, Miguel [1 ]
Martinez, Eulalia [2 ]
机构
[1] Univ La Rioja, Dept Math & Computat, Logrono 26006, Spain
[2] Univ Politecn Valencia, Inst Univ Matemat Multidisciplinar, Valencia 46022, Spain
关键词
Fredholm integral equation; iterative processes; Newton’ s method; separable and non-separable kernels; local and semilocal convergence;
D O I
10.3390/math8101747
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This work is devoted to Fredholm integral equations of second kind with non-separable kernels. Our strategy is to approximate the non-separable kernel by using an adequate Taylor's development. Then, we adapt an already known technique used for separable kernels to our case. First, we study the local convergence of the proposed iterative scheme, so we obtain a ball of starting points around the solution. Then, we complete the theoretical study with the semilocal convergence analysis, that allow us to obtain the domain of existence for the solution in terms of the starting point. In this case, the existence of a solution is deduced. Finally, we illustrate this study with some numerical experiments.
引用
收藏
页码:1 / 13
页数:13
相关论文
共 18 条
[1]  
Altman M., 1961, B ACAD POL SCI SM, V9, P633
[2]   Approximation of inverse operators by a new family of high-order iterative methods [J].
Amat, S. ;
Ezquerro, J. A. ;
Hernandez-Veron, M. A. .
NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2014, 21 (05) :629-644
[3]   SOME INTEGRAL EQUATIONS WITH NONSYMMETRIC SEPARABLE KERNELS [J].
ANDERSON, BD ;
KAILATH, T .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1971, 20 (04) :659-&
[4]  
[Anonymous], 2007, TABLE INTEGRALS SERI
[5]  
Argyros I.K., 1988, Aequationes Mathematicae, V36, P99
[6]   An iterative shifted Chebyshev method for nonlinear stochastic Ito-Volterra integral equations [J].
Barikbin, M. S. ;
Vahidi, A. R. ;
Damercheli, T. ;
Babolian, E. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2020, 378
[7]   NONLINEAR FEEDBACK-CONTROL FOR OPERATING A NONISOTHERMAL CSTR NEAR AN UNSTABLE STEADY-STATE [J].
BRUNS, DD ;
BAILEY, JE .
CHEMICAL ENGINEERING SCIENCE, 1977, 32 (03) :257-264
[8]  
Chandrasekhar S., 2013, Radiative Transfer
[9]  
Davis HT, 1962, INTRO NONLINEAR DIFF
[10]  
Ezquerro JA, 2004, COMPUT APPL MATH, V23, P55, DOI 10.1590/S1807-03022004000100003