Epidemic Forecasting is Messier Than Weather Forecasting: The Role of Human Behavior and Internet Data Streams in Epidemic Forecast

被引:59
作者
Moran, Kelly R. [1 ]
Fairchild, Geoffrey [1 ]
Generous, Nicholas [1 ]
Hickmann, Kyle [2 ]
Osthus, Dave [3 ]
Priedhorsky, Reid [4 ]
Hyman, James [2 ,5 ]
Del Valle, Sara Y. [1 ]
机构
[1] Los Alamos Natl Lab, Analyt Intelligence & Technol Div, Los Alamos, NM USA
[2] Los Alamos Natl Lab, Theoret Div, Los Alamos, NM USA
[3] Los Alamos Natl Lab, Comp Computat & Stat Sci Div, Los Alamos, NM USA
[4] Los Alamos Natl Lab, High Performance Comp Div, Los Alamos, NM USA
[5] Tulane Univ, Dept Math, New Orleans, LA 70118 USA
基金
美国国家卫生研究院;
关键词
disease; weather; forecasting; Internet data; modeling; BIG DATA; INFLUENZA; SURVEILLANCE;
D O I
10.1093/infdis/jiw375
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
Mathematical models, such as those that forecast the spread of epidemics or predict the weather, must overcome the challenges of integrating incomplete and inaccurate data in computer simulations, estimating the probability of multiple possible scenarios, incorporating changes in human behavior and/or the pathogen, and environmental factors. In the past 3 decades, the weather forecasting community has made significant advances in data collection, assimilating heterogeneous data steams into models and communicating the uncertainty of their predictions to the general public. Epidemic modelers are struggling with these same issues in forecasting the spread of emerging diseases, such as Zika virus infection and Ebola virus disease. While weather models rely on physical systems, data from satellites, and weather stations, epidemic models rely on human interactions, multiple data sources such as clinical surveillance and Internet data, and environmental or biological factors that can change the pathogen dynamics. We describe some of similarities and differences between these 2 fields and how the epidemic modeling community is rising to the challenges posed by forecasting to help anticipate and guide the mitigation of epidemics. We conclude that some of the fundamental differences between these 2 fields, such as human behavior, make disease forecasting more challenging than weather forecasting.
引用
收藏
页码:S404 / S408
页数:5
相关论文
共 29 条
[1]   Enhancing disease surveillance with novel data streams: challenges and opportunities [J].
Althouse, Benjamin M. ;
Scarpino, Samuel V. ;
Meyers, Lauren Ancel ;
Ayers, John W. ;
Bargsten, Marisa ;
Baumbach, Joan ;
Brownstein, John S. ;
Castro, Lauren ;
Clapham, Hannah ;
Cummings, Derek A. T. ;
Del Valle, Sara ;
Eubank, Stephen ;
Fairchild, Geoffrey ;
Finelli, Lyn ;
Generous, Nicholas ;
George, Dylan ;
Harper, David R. ;
Hebert-Dufresne, Laurent ;
Johansson, Michael A. ;
Konty, Kevin ;
Lipsitch, Marc ;
Milinovich, Gabriel ;
Miller, Joseph D. ;
Nsoesie, Elaine O. ;
Olson, Donald R. ;
Paul, Michael ;
Polgreen, Philip M. ;
Priedhorsky, Reid ;
Read, Jonathan M. ;
Rodriguez-Barraquer, Isabel ;
Smith, Derek J. ;
Stefansen, Christian ;
Swerdlow, David L. ;
Thompson, Deborah ;
Vespignani, Alessandro ;
Wesolowski, Amy .
EPJ DATA SCIENCE, 2015, 4 (01) :1-8
[2]   Using Google Flu Trends data in forecasting influenza-like-illness related ED visits in Omaha, Nebraska [J].
Araz, Ozgur M. ;
Bentley, Dan ;
Muelleman, Robert L. .
AMERICAN JOURNAL OF EMERGENCY MEDICINE, 2014, 32 (09) :1016-1023
[3]   Demographic and attitudinal determinants of protective behaviours during a pandemic: A review [J].
Bish, Alison ;
Michie, Susan .
BRITISH JOURNAL OF HEALTH PSYCHOLOGY, 2010, 15 :797-824
[4]   Lightweight methods to estimate influenza rates and alcohol sales volume from Twitter messages [J].
Culotta, Aron .
LANGUAGE RESOURCES AND EVALUATION, 2013, 47 (01) :217-238
[5]   Using Networks to Combine "Big Data" and Traditional Surveillance to Improve Influenza Predictions [J].
Davidson, Michael W. ;
Haim, Dotan A. ;
Radin, Jennifer M. .
SCIENTIFIC REPORTS, 2015, 5
[6]   Effects of behavioral changes in a smallpox attack model [J].
Del Valle, S ;
Hethcote, H ;
Hyman, JM ;
Castillo-Chavez, C .
MATHEMATICAL BIOSCIENCES, 2005, 195 (02) :228-251
[7]  
Digital Content Next, 2012, OPA STUDY DEFINES TO
[8]  
Dole R., 2009, FUTURE FORECASTS
[9]   Global Disease Monitoring and Forecasting with Wikipedia [J].
Generous, Nicholas ;
Fairchild, Geoffrey ;
Deshpande, Alina ;
Del Valle, Sara Y. ;
Priedhorsky, Reid .
PLOS COMPUTATIONAL BIOLOGY, 2014, 10 (11)
[10]  
George D., 2015, BACK FUTURE USING HI