ONLINE PARAMETER ESTIMATION IN DYNAMIC MARKOV RANDOM FIELDS FOR IMAGE SEQUENCE ANALYSIS

被引:0
作者
Jagadeesh, Vignesh
Manjunath, B. S.
Anderson, James
Jones, Bryan
Marc, Robert
Fisher, Steven K.
机构
来源
2012 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP 2012) | 2012年
基金
美国国家科学基金会;
关键词
MRF; Parameter Estimation; Image Sequence Analysis;
D O I
暂无
中图分类号
TB8 [摄影技术];
学科分类号
0804 ;
摘要
Markov Random Fields (MRF) have proven to be extremely useful models for efficient and accurate image segmentation. Recent literature points to an increased effort towards incorporating useful priors (shape, geometry, context) in a MRF framework. However, topological priors, considered extremely crucial in biological and natural image sequences have been less explored. This work proposes a strategy wherein free parameters of the MRF are used to make it topology aware using a semantic graphical model working in conjunction with the MRF. Estimation of free parameters is constrained by prior knowledge of an object's topological dynamics encoded by the graphical model. Maximizing a regional conformance measure yields parameters for the frame under consideration. The application motivating this work is the tracing of neuronal structures across 3D serial section Transmission Electron Micrograph (ssTEM) stacks. Applicability of the proposed method is demonstrated by tracing 3D structures in ssTEM stacks.
引用
收藏
页码:301 / 304
页数:4
相关论文
共 10 条
  • [1] Anderson J.R., PLOS09
  • [2] Boykov Y., PAMI04
  • [3] Boykov Y., ICCV 2001
  • [4] Cappe O., P IEEE07
  • [5] Cremers D., PAMI06
  • [6] Jagadeesh V, MICCAI 2011
  • [7] Jain V., CVPR10
  • [8] Vu N., CVPR08
  • [9] Winn J., CVPR06
  • [10] Zeng Y., CVIU08