A hybrid electrolyte energy storage device with high energy and long life using lithium anode and MnO2 nanoflake cathode

被引:23
作者
Chou, Shu-Lei [1 ]
Wang, Yun-Xiao [1 ]
Xu, Jiantie [1 ]
Wang, Jia-Zhao [1 ]
Liu, Hua-Kun [1 ]
Dou, Shi-Xue [1 ]
机构
[1] Univ Wollongong, Inst Superconducting & Elect Mat, Wollongong, NSW 2522, Australia
基金
澳大利亚研究理事会;
关键词
Hybrid electrolyte; Supercapacitor; Lithium battery; MnO2; Ionic liquid; LiSICON; ELECTROCHEMICAL CAPACITOR; RECHARGEABLE BATTERIES; MANGANESE OXIDE; IONIC LIQUIDS; SUPERCAPACITORS; ELECTRODEPOSITION; NANOWIRES; BEHAVIOR; LISICON;
D O I
10.1016/j.elecom.2013.03.003
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
A hybrid electrolyte energy storage system combining the features of supercapacitors and lithium batteries has been constructed. It consists of MnO2 nanoflakes in 1 M Li2SO4 aqueous electrolyte as the cathode and lithium foil in ionic liquid (1 M lithium bis(trifluoromethanesulfonyl)imide (LiNTf2) in N-methyl-N-propyl pyrrolidinium bis(trifluoromethanesulfonyl)imide ([C(3)mpyr][NTf2])) electrolyte as the anode, separated by a lithium super ionic conductor glass ceramic film (LiSICON). This system shows the advantages of both a supercapacitor (long cycle life) and a lithium battery (high energy), as well as low cost and improved safety due to the combination of ionic liquid and ceramic solid state electrolyte in lithium side, which can reduce the formation and prevent the penetration of lithium dendrites. The specific energy for the cathode materials in the hybrid electrolyte system is 170 Wh kg(-1) with more than 85% retention up to 2400 cycles. This system is a great candidate for stationary batteries storing solar and wind energy. (c) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:35 / 38
页数:4
相关论文
共 30 条
[1]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[2]  
Armand M, 2009, NAT MATER, V8, P621, DOI [10.1038/NMAT2448, 10.1038/nmat2448]
[3]   Rechargeable batteries with aqueous electrolytes [J].
Beck, F ;
Ruetschi, P .
ELECTROCHIMICA ACTA, 2000, 45 (15-16) :2467-2482
[4]   The zwitterion effect in ionic liquids: Towards practical rechargeable lithium-metal batteries [J].
Byrne, N ;
Howlett, PC ;
MacFarlane, DR ;
Forsyth, M .
ADVANCED MATERIALS, 2005, 17 (20) :2497-+
[5]   Electrodeposition of MnO2 nanowires on carbon nanotube paper as free-standing, flexible electrode for supercapacitors [J].
Chou, Shu-Lei ;
Wang, Jia-Zhao ;
Chew, Sau-Yen ;
Liu, Hua-Kun ;
Dou, Shi-Xue .
ELECTROCHEMISTRY COMMUNICATIONS, 2008, 10 (11) :1724-1727
[6]   Electrodeposition synthesis and electrochemical properties of nanostructured γ-MnO2 films [J].
Chou, Shulei ;
Cheng, Fangyi ;
Chen, Jun .
JOURNAL OF POWER SOURCES, 2006, 162 (01) :727-734
[7]   Ionic liquids as electrolytes [J].
Galinski, Maciej ;
Lewandowski, Andrzej ;
Stepniak, Izabela .
ELECTROCHIMICA ACTA, 2006, 51 (26) :5567-5580
[8]   Ideal capacitive behavior of hydrous manganese oxide prepared by anodic deposition [J].
Hu, CC ;
Tsou, TW .
ELECTROCHEMISTRY COMMUNICATIONS, 2002, 4 (02) :105-109
[9]   Lithium ionic conductor thio-LISICON -: The Li2S-GeS2-P2S5 system [J].
Kanno, R ;
Maruyama, M .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2001, 148 (07) :A742-A746
[10]   EQUILIBRIUM POTENTIALS OF SPINEL-TYPE MANGANESE OXIDE IN AQUEOUS-SOLUTIONS [J].
KANOH, H ;
FENG, Q ;
MIYAI, Y ;
OOI, K .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1993, 140 (11) :3162-3166