Ni3C MXene nanosheets as an efficient binder-less electrocatalyst for oxygen evolution reaction

被引:8
|
作者
Prince, Aksha Gilbert [1 ]
Durai, Lignesh [1 ]
Badhulika, Sushmee [1 ]
机构
[1] Indian Inst Technol, Dept Elect Engn, Hyderabad 502285, India
关键词
Ni 3 C nanosheets; MXene; Oxygen evolution reaction; Binder; -less; Electrocatalyst; EXFOLIATION;
D O I
10.1016/j.flatc.2022.100439
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Low overpotential driven water-splitting is globally proposed as an effective replacement of conventional energy generation devices. However, these applications are extensively reported with noble electrocatalysts which makes them unsuitable for large scale applications. Therefore, it is essential to develop a non-noble, highly stable and low-cost electrocatalyst for oxygen evolution reaction (OER). In this report, we demonstrate solvothermal HF free etching and exfoliation of Ni-MAX to form Ni-MXene nanosheets as an effective electrocatalyst for OER. The as-synthesized Ni-MXene catalyst over nickel foam NiMX/NF electrode exhibits an overpotential of 245 mV at 100 mA/cm2. This performance can be attributed to the increased electrocatalytic activity and enhanced conductivity of the catalyst due to the presence of Ni2+/3+ redox couple and carbon in the Ni-MXene nanosheets, respectively. The catalyst electrode exhibits 83 % of current density retention after 14 h of continuous catalysis. This proves Ni MXene as an ideal candidate for the large scale and industrial applications of OER.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] NiCo2O4/MXene Hybrid as an Efficient Bifunctional Electrocatalyst for Oxygen Evolution and Reduction Reaction
    Vazhayil, Ashalatha
    Vazhayal, Linsha
    Shyamli, Ashok C.
    Thomas, Jasmine
    Thomas, Nygil
    CHEMCATCHEM, 2024, 16 (06)
  • [42] Ce doped Ni(OH)2/Ni-MOF nanosheets as an efficient oxygen evolution and urea oxidation reactions electrocatalyst
    Cheng, Youwei
    Zhu, Lian
    Gong, Yaqiong
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 58 : 416 - 425
  • [43] Cu-doped Ni3S2 nanosheet arrays on Ni foam as an efficient electrocatalyst for oxygen evolution reaction
    Liu, Huiyin
    Guo, Zuoxing
    Lian, Jianshe
    JOURNAL OF SOLID STATE CHEMISTRY, 2021, 293 (293)
  • [44] Ambient Growth of Hierarchical FeOOH/MXene as Enhanced Electrocatalyst for Oxygen Evolution Reaction
    Zhao, Kaixin
    Ma, Xinzhi
    Lin, Shuangyan
    Xu, Zhikun
    Li, Lin
    CHEMISTRYSELECT, 2020, 5 (06): : 1890 - 1895
  • [45] A facile fabrication method for ultrathin NiO/Ni nanosheets as a high-performance electrocatalyst for the oxygen evolution reaction
    Xu, Yushuai
    Huang, Kai
    Ou, Gang
    Tang, Hao
    Wei, Hehe
    Zhang, Qingyun
    Gong, Jianghong
    Fang, Minghao
    Wu, Hui
    RSC ADVANCES, 2017, 7 (30) : 18539 - 18544
  • [46] Facile synthesis of Ni3B/rGO nanocomposite as an efficient electrocatalyst for the oxygen evolution reaction in alkaline media
    Arivu, Maalavan
    Masud, Jahangir
    Umapathi, Siddesh
    Nath, Manashi
    ELECTROCHEMISTRY COMMUNICATIONS, 2018, 86 : 121 - 125
  • [47] Variable nanosheets for highly efficient oxygen evolution reaction
    Qiao, Xuezhi
    Yin, Xiaomeng
    Wen, Lei
    Chen, Xiangyu
    Li, Jinming
    Ye, Haochen
    Huang, Xiaobin
    Zhao, Weidong
    Wang, Tie
    CHEM, 2022, 8 (12): : 3241 - 3251
  • [48] Hierarchically Porous Ni3S2 Nanorod Array Foam as Highly Efficient Electrocatalyst for Hydrogen Evolution Reaction and Oxygen Evolution Reaction
    Ouyang, Canbin
    Wang, Xin
    Wang, Chen
    Zhang, Xiaoxu
    Wu, Jianghong
    Ma, Zhaoling
    Dou, Shuo
    Wang, Shuangyin
    ELECTROCHIMICA ACTA, 2015, 174 : 297 - 301
  • [49] An Efficient Electrocatalyst (PtCo/C) for the Oxygen Reduction Reaction
    Hou, Bingxue
    Luo, Xinlei
    Zheng, Ziheng
    Tang, Rui
    Zhang, Qi
    Gholizadeh, Mortaza
    Wang, Chengcheng
    Tan, Zanxiong
    CATALYSTS, 2022, 12 (07)
  • [50] Pt-Mn3O4/C as efficient electrocatalyst for oxygen evolution reaction in water electrolysis
    Li, Zhuo-ying
    Shi, Shu-ting
    Zhong, Qi-sui
    Zhang, Chan-juan
    Xu, Chang-wei
    ELECTROCHIMICA ACTA, 2014, 146 : 119 - 124