Connectivity analysis of normal and mild cognitive impairment patients based on FDG and PiB-PET images

被引:19
|
作者
Son, Seong-Jin [1 ]
Kim, Jonghoon [1 ]
Seo, Jongbum [2 ]
Lee, Jong-min [3 ]
Park, Hyunjin [4 ]
机构
[1] Sungkyunkwan Univ, Dept Elect Elect & Comp Engn, Seoul, South Korea
[2] Yonsei Univ, Dept Biomed Engn, Seoul 120749, South Korea
[3] Hanyang Univ, Dept Biomed Engn, Seoul, South Korea
[4] Sungkyunkwan Univ, Sch Elect & Elect Engn, Seoul, South Korea
基金
新加坡国家研究基金会;
关键词
Connectivity analysis; FOG-PET; PiB-PET; Mild cognitive impairment; AMYLOID-BETA BURDEN; INTRINSIC FUNCTIONAL CONNECTIVITY; ALZHEIMERS-DISEASE; BRAIN NETWORKS; F-18-FDG PET; DEMENTIA; STATE; PARCELLATION; INDIVIDUALS; POPULATION;
D O I
10.1016/j.neures.2015.04.002
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Connectivity analysis allows researchers to explore interregional correlations, and thus is well suited for analysis of complex networks such as the brain. We applied whole brain connectivity analysis to assess the progression of Alzheimer's disease (AD). To detect early AD progression, we focused on distinguishing between normal control (NC) subjects and subjects with mild cognitive impairment (MCI). Fludeoxyglucose (FDG) and Pittsburgh compound B (PiB)-positron emission tomography (PET) were acquired for 75 participants. A graph network was implemented using correlation matrices. Correlation matrices of FOG and PiB-PET were combined into one matrix using a novel method. Group-wise differences between NC and MCI patients were assessed using clustering coefficients, characteristic path lengths, and betweenness centrality using various correlation matrices. Using connectivity analysis, this study identified important regions differentially affected by AD progression. (C) 2015 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.
引用
收藏
页码:50 / 58
页数:9
相关论文
共 50 条
  • [1] Regional analysis of FDG and PIB-PET images in normal aging, mild cognitive impairment, and Alzheimer's disease
    Li, Yi
    Rinne, Juha O.
    Mosconi, Lisa
    Pirraglia, Elizabeth
    Rusinek, Henry
    DeSanti, Susan
    Kemppainen, Nina
    Nagren, Kjell
    Kim, Byeong-Chae
    Tsui, Wai
    de Leon, Mony J.
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2008, 35 (12) : 2169 - 2181
  • [2] Regional analysis of FDG and PIB-PET images in normal aging, mild cognitive impairment, and Alzheimer’s disease
    Yi Li
    Juha O. Rinne
    Lisa Mosconi
    Elizabeth Pirraglia
    Henry Rusinek
    Susan DeSanti
    Nina Kemppainen
    Kjell Någren
    Byeong-Chae Kim
    Wai Tsui
    Mony J. de Leon
    European Journal of Nuclear Medicine and Molecular Imaging, 2008, 35 : 2169 - 2181
  • [3] Abnormal Amyloid Load in Mild Cognitive Impairment: The Effect of Reducing the PiB-PET Threshold
    Ismail, Rola
    Parbo, Peter
    Hansen, Kim V.
    Schaldemose, Jeppe L.
    Dalby, Rikke B.
    Tietze, Anna
    Kjeldsen, Pernille L.
    la Cour, Sanne Hage
    Qvist, Per
    Gottrup, Hanne
    Eskildsen, Simon F.
    Brooks, David J.
    JOURNAL OF NEUROIMAGING, 2019, 29 (04) : 499 - 505
  • [4] PiB-PET Imaging-Based Serum Proteome Profiles Predict Mild Cognitive Impairment and Alzheimer's Disease
    Kang, Seokjo
    Jeong, Hyobin
    Baek, Je-Hyun
    Lee, Seung-Jin
    Han, Sun-Ho
    Cho, Hyun Jin
    Kim, Hee
    Hong, Hyun Seok
    Kim, Young Ho
    Yi, Eugene C.
    Seo, Sang Won
    Na, Duk L.
    Hwang, Daehee
    Mook-Jung, Inhee
    JOURNAL OF ALZHEIMERS DISEASE, 2016, 53 (04) : 1563 - 1576
  • [5] Artificial Intelligence on FDG PET Images Identifies Mild Cognitive Impairment Patients with Neurodegenerative Disease
    Prats-Climent, Joan
    Teresa Gandia-Ferrero, Maria
    Torres-Espallardo, Irene
    Alvarez-Sanchez, Lourdes
    Martinez-Sanchis, Begona
    Chafer-Pericas, Consuelo
    Gomez-Rico, Ignacio
    Cerda-Alberich, Leonor
    Aparici-Robles, Fernando
    Baquero-Toledo, Miquel
    Jose Rodriguez-Alvarez, Maria
    Marti-Bonmati, Luis
    JOURNAL OF MEDICAL SYSTEMS, 2022, 46 (08)
  • [6] Comparison of 18F-FDG and PiB PET in Cognitive Impairment
    Lowe, Val J.
    Kemp, Bradley J.
    Jack, Clifford R., Jr.
    Senjem, Matthew
    Weigand, Stephen
    Shiung, Maria
    Smith, Glenn
    Knopman, David
    Boeve, Bradley
    Mullan, Brian
    Petersen, Ronald C.
    JOURNAL OF NUCLEAR MEDICINE, 2009, 50 (06) : 878 - 886
  • [7] Comparison of MRI based and PET template based approaches in the quantitative analysis of amyloid imaging with PIB-PET
    Edison, P.
    Carter, S. F.
    Rinne, J. O.
    Gelosa, G.
    Herholz, K.
    Nordberg, A.
    Brooks, D. J.
    Hinz, R.
    NEUROIMAGE, 2013, 70 : 423 - 433
  • [8] AutoEncoder-based Feature Ranking for Predicting Mild Cognitive Impairment Conversion using FDG-PET Images
    Pham Minh Tuan
    Nguyen Linh Trung
    Adel, Mouloud
    Guedj, Eric
    2023 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP, SSP, 2023, : 720 - 724
  • [9] Plasma Aβ and PET PiB binding are inversely related in mild cognitive impairment
    Devanand, D. P.
    Schupf, N.
    Stern, Y.
    Parsey, R.
    Pelton, G. H.
    Mehta, P.
    Mayeux, R.
    NEUROLOGY, 2011, 77 (02) : 125 - 131
  • [10] Artificial Intelligence on FDG PET Images Identifies Mild Cognitive Impairment Patients with Neurodegenerative Disease
    Joan Prats-Climent
    Maria Teresa Gandia-Ferrero
    Irene Torres-Espallardo
    Lourdes Álvarez-Sanchez
    Begoña Martínez-Sanchis
    Consuelo Cháfer-Pericás
    Ignacio Gómez-Rico
    Leonor Cerdá-Alberich
    Fernando Aparici-Robles
    Miquel Baquero-Toledo
    María José Rodríguez-Álvarez
    Luis Martí-Bonmatí
    Journal of Medical Systems, 46