Generating systems of differential invariants and the theorem on existence for curves in the pseudo-Euclidean geometry

被引:11
作者
Khadjiev, Djavvat [1 ]
Oren, Idris [1 ]
Peksen, Omer [1 ]
机构
[1] Karadeniz Tech Univ, Dept Math, TR-61080 Trabzon, Turkey
关键词
Curve; differential invariant; pseudo-Euclidean geometry; Minkowski geometry; NULL CURVES;
D O I
10.3906/mat-1104-41
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let M(n,p) be the group of all motions of an n-dimensional pseudo-Euclidean space of index p. It is proved that the complete system of M(n,p)-invariant differential rational functions of a path (curve) is a generating system of the differential field of all M(n,p)-invariant differential rational functions of a path (curve), respectively. A fundamental system of relations between elements of the complete system of M(n,p)-invariant differential rational functions of a path (curve) is described.
引用
收藏
页码:80 / 94
页数:15
相关论文
共 22 条
[1]  
ASLANER R, 2008, TURKISH J MATH, V32, P1
[2]  
BEJANCU A, 1994, PUBL MATH-DEBRECEN, V44, P145
[3]  
Bejancu A., 1996, Mathematics and its Applications
[4]  
BERARD BL, 2002, SEM THEOR SPECTR GEO, V20, P101
[5]   Frenet-Serret formalism for null world lines [J].
Bini, D ;
Geralico, A ;
Jantzen, RT .
CLASSICAL AND QUANTUM GRAVITY, 2006, 23 (11) :3963-3981
[6]  
BONNOR WB, 1969, TENSOR, V20, P229
[7]   On the theorem of natural equations of a curve [J].
Borisov, YF .
SIBERIAN MATHEMATICAL JOURNAL, 1999, 40 (04) :617-621
[8]  
Borisov Yu. F., 1997, SIBERIAN J, V38, P411
[9]   On the cartan curvatures of a null curve in Minkowski spacetime [J].
Çöken, AC ;
Çiftçi, Ü .
GEOMETRIAE DEDICATA, 2005, 114 (01) :71-78
[10]   s-Degenerate curves in Lorentzian space forms [J].
Ferrández, A ;
Giménez, A ;
Lucas, P .
JOURNAL OF GEOMETRY AND PHYSICS, 2003, 45 (1-2) :116-129