A lower limb exoskeleton control system based on steady state visual evoked potentials

被引:172
作者
Kwak, No-Sang [1 ]
Mueller, Klaus-Robert [1 ,2 ]
Lee, Seong-Whan [1 ]
机构
[1] Korea Univ, Dept Brain & Cognit Engn, Seoul, South Korea
[2] TU Berlin, Dept Comp Sci, Machine Learning Grp, Berlin, Germany
基金
新加坡国家研究基金会;
关键词
brain-machine interface; electroencephalogram; steady state visual evoked potentials; exoskeleton control; BRAIN-COMPUTER INTERFACE; GAIT; BCI; CLASSIFICATION; FRAMEWORK; STROKE;
D O I
10.1088/1741-2560/12/5/056009
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Objective. We have developed an asynchronous brain-machine interface (BMI)-based lower limb exoskeleton control system based on steady-state visual evoked potentials (SSVEPs). Approach. By decoding electroencephalography signals in real-time, users are able to walk forward, turn right, turn left, sit, and stand while wearing the exoskeleton. SSVEP stimulation is implemented with a visual stimulation unit, consisting of five light emitting diodes fixed to the exoskeleton. A canonical correlation analysis (CCA) method for the extraction of frequency information associated with the SSVEP was used in combination with k-nearest neighbors. Main results. Overall, 11 healthy subjects participated in the experiment to evaluate performance. To achieve the best classification, CCA was first calibrated in an offline experiment. In the subsequent online experiment, our results exhibit accuracies of 91.3 +/- 5.73%, a response time of 3.28 +/- 1.82 s, an information transfer rate of 32.9 +/- 9.13 bits/min, and a completion time of 1100 +/- 154.92 s for the experimental parcour studied. Significance. The ability to achieve such high quality BMI control indicates that an SSVEP-based lower limb exoskeleton for gait assistance is becoming feasible.
引用
收藏
页数:14
相关论文
共 51 条
  • [1] [Anonymous], 2007, BRAIN COMPUTER INTER
  • [2] [Anonymous], P IEEE INT C SYST MA
  • [3] [Anonymous], P IEEE INT WINT WORK
  • [4] EEG differences between eyes-closed and eyes-open resting conditions
    Barry, Robert J.
    Clarke, Adam R.
    Johnstone, Stuart J.
    Magee, Christopher A.
    Rushby, Jacqueline A.
    [J]. CLINICAL NEUROPHYSIOLOGY, 2007, 118 (12) : 2765 - 2773
  • [5] Biessmann Felix, 2011, IEEE Rev Biomed Eng, V4, P26, DOI 10.1109/RBME.2011.2170675
  • [6] Optimizing spatial filters for robust EEG single-trial analysis
    Blankertz, Benjamin
    Tomioka, Ryota
    Lemm, Steven
    Kawanabe, Motoaki
    Mueller, Klaus-Robert
    [J]. IEEE SIGNAL PROCESSING MAGAZINE, 2008, 25 (01) : 41 - 56
  • [7] Single-trial analysis and classification of ERP components - A tutorial
    Blankertz, Benjamin
    Lemm, Steven
    Treder, Matthias
    Haufe, Stefan
    Mueller, Klaus-Robert
    [J]. NEUROIMAGE, 2011, 56 (02) : 814 - 825
  • [8] Neurophysiological predictor of SMR-based BCI performance
    Blankertz, Benjamin
    Sannelli, Claudia
    Haider, Sebastian
    Hammer, Eva M.
    Kuebler, Andrea
    Mueller, Klaus-Robert
    Curio, Gabriel
    Dickhaus, Thorsten
    [J]. NEUROIMAGE, 2010, 51 (04) : 1303 - 1309
  • [9] Brain-Controlled Wheelchairs A Robotic Architecture
    Carlson, Tom
    Millan, Jose del R.
    [J]. IEEE ROBOTICS & AUTOMATION MAGAZINE, 2013, 20 (01) : 65 - 73
  • [10] High-performance neuroprosthetic control by an individual with tetraplegia
    Collinger, Jennifer L.
    Wodlinger, Brian
    Downey, John E.
    Wang, Wei
    Tyler-Kabara, Elizabeth C.
    Weber, Douglas J.
    McMorland, Angus J. C.
    Velliste, Meel
    Boninger, Michael L.
    Schwartz, Andrew B.
    [J]. LANCET, 2013, 381 (9866) : 557 - 564