Neuro-Fuzzy Algorithm for a Biped Robotic System

被引:0
作者
Wongsuwarn, Hataitep [1 ]
Laowattana, Djitt [2 ]
机构
[1] King Mongkuts Univ Thonburi KMUTT, Mech Engn, Bangkok 10140, Thailand
[2] KMUTT, Inst Field Robot FIBO, Bangkok 10140, Thailand
来源
PROCEEDINGS OF WORLD ACADEMY OF SCIENCE, ENGINEERING AND TECHNOLOGY, VOL 15 | 2006年 / 15卷
关键词
Biped Robot; Computational Intelligence; Static and Dynamic Walking; Gait Synthesis; Neuro-Fuzzy System;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper summaries basic principles and concepts of intelligent controls, implemented in humanoid robotics as well as recent algorithms being devised for advanced control of humanoid robots. Secondly, this paper presents a new approach neuro-fuzzy system. We have included some simulating results from our computational intelligence technique that will be applied to our humanoid robot. Subsequently, we determine a relationship between joint trajectories and located forces on robot's foot through a proposed neuro-fuzzy technique.
引用
收藏
页码:138 / +
页数:3
相关论文
共 50 条
  • [31] A Neuro-Fuzzy Classification System Using Dynamic Clustering
    Singh, Heisnam Rohen
    Biswas, Saroj Kr
    Purkayastha, Biswajit
    MACHINE INTELLIGENCE AND SIGNAL ANALYSIS, 2019, 748 : 157 - 170
  • [32] Skin Cancer Recognition by Using a Neuro-Fuzzy System
    Salah, Bareqa
    Alshraideh, Mohammad
    Beidas, Rasha
    Hayajneh, Ferial
    CANCER INFORMATICS, 2011, 10 : 1 - 11
  • [33] Neuro-Fuzzy System for Projects Execution Control Support
    Bermudez Pena, Anie
    Lugo Garcia, Jose Alejandro
    Perez Pupo, Iliana
    Pinero Perez, Pedro Yobanis
    Cruz Lemus, Gil
    REVISTA CUBANA DE INGENIERIA, 2014, 5 (02): : 41 - 51
  • [35] A Hybrid Neuro-Fuzzy Element: a New Structural Node for Evolving Neuro-Fuzzy Systems
    Hu, Zhengbing
    Tyshchenko, Oleksii K.
    2018 IEEE SECOND INTERNATIONAL CONFERENCE ON DATA STREAM MINING & PROCESSING (DSMP), 2018, : 402 - 406
  • [36] A Cascade Deep Neuro-Fuzzy System for High-Dimensional Online Possibilistic Fuzzy Clustering
    Hu, Zhengbing
    Bodyanskiy, Yevgeniy V.
    Tyshchenko, Oleksii K.
    2016 XITH INTERNATIONAL SCIENTIFIC AND TECHNICAL CONFERENCE COMPUTER SCIENCES AND INFORMATION TECHNOLOGIES (CSIT), 2016, : 119 - 122
  • [37] Applying particle swarm optimization algorithm for tuning a neuro-fuzzy inference system for sensor monitoring
    Oliveira, M. V.
    Schirru, R.
    PROGRESS IN NUCLEAR ENERGY, 2009, 51 (01) : 177 - 183
  • [38] Development of a Self-Organized Neuro-Fuzzy Model by Using Genetic Algorithm for System Identification
    Chen, Chuen-Jyh
    Yang, Shih-Ming
    Lin, Shih-Guei
    JOURNAL OF AERONAUTICS ASTRONAUTICS AND AVIATION, 2014, 46 (04): : 281 - 289
  • [39] Simplification of Neuro-Fuzzy Models
    Siminski, Krzysztof
    MAN-MACHINE INTERACTIONS, 2009, 59 : 265 - 272
  • [40] MODELLING AND FORECAST OF CHARCOAL PRICES USING A NEURO-FUZZY SYSTEM
    Araujo Junior, Carlos Alberto
    da Silva, Liniker Fernandes
    da Silva, Marcio Lopes
    Leite, Helio Garcia
    Valdetaro, Erlon Barbosa
    Donato, Danilo Barros
    Oliveira Castro, Renato Vinicius
    CERNE, 2016, 22 (02) : 151 - 158