RELACS nuclei barcoding enables high-throughput ChIP-seq

被引:22
作者
Arrigoni, Laura [1 ]
Al-Hasani, Hoor [1 ]
Ramirez, Fidel [1 ]
Panzeri, Ilaria [1 ]
Ryan, Devon Patrick [1 ]
Santacruz, Diana [1 ]
Kress, Nadia [1 ]
Pospisilik, John Andrew [1 ]
Boenisch, Ulrike [1 ]
Manke, Thomas [1 ]
机构
[1] Max Planck Inst Immunobiol & Epigenet, Stubeweg 51, D-79108 Freiburg, Germany
关键词
CHROMATIN STATE DYNAMICS; REVEALS PRINCIPLES; GENOME; DNA; MAP;
D O I
10.1038/s42003-018-0219-z
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Chromatin immunoprecipitation followed by deep sequencing (ChIP-seq) is an invaluable tool for mapping chromatin-associated proteins. Current barcoding strategies aim to improve assay throughput and scalability but intense sample handling and lack of standardization over cell types, cell numbers and epitopes hinder wide-spread use in the field. Here, we present a barcoding method to enable high-throughput ChIP-seq using common molecular biology techniques. The method, called RELACS (restriction enzyme-based labeling of chromatin in situ) relies on standardized nuclei extraction from any source and employs chromatin cutting and barcoding within intact nuclei. Barcoded nuclei are pooled and processed within the same ChIP reaction, for maximal comparability and workload reduction. The innovative barcoding concept is particularly user-friendly and suitable for implementation to standardized large-scale clinical studies and scarce samples. Aiming to maximize universality and scalability, RELACS can generate ChIP-seq libraries for transcription factors and histone modifications from hundreds of samples within three days.
引用
收藏
页数:12
相关论文
共 44 条
[1]   Whole-genome chromatin profiling from limited numbers of cells using nano-ChIP-seq [J].
Adli, Mazhar ;
Bernstein, Bradley E. .
NATURE PROTOCOLS, 2011, 6 (10) :1656-1668
[2]   AHT-ChIP-seq: a completely automated robotic protocol for high-throughput chromatin immunoprecipitation [J].
Aldridge, Sarah ;
Watt, Stephen ;
Quail, Michael A. ;
Rayner, Tim ;
Lukk, Margus ;
Bimson, Michael F. ;
Gaffney, Daniel ;
Odom, Duncan T. .
GENOME BIOLOGY, 2013, 14 (11)
[3]   Standardizing chromatin research: a simple and universal method for ChIP-seq [J].
Arrigoni, Laura ;
Richter, Andreas S. ;
Betancourt, Emily ;
Bruder, Kerstin ;
Diehl, Sarah ;
Manke, Thomas ;
Boenisch, Ulrike .
NUCLEIC ACIDS RESEARCH, 2016, 44 (07)
[4]  
Bailey T L, 1994, Proc Int Conf Intell Syst Mol Biol, V2, P28
[5]   An ultra-low-input native ChIP-seq protocol for genome-wide profiling of rare cell populations [J].
Brind'Amour, Julie ;
Liu, Sheng ;
Hudson, Matthew ;
Chen, Carol ;
Karimi, Mohammad M. ;
Lorincz, Matthew C. .
NATURE COMMUNICATIONS, 2015, 6
[6]  
Cao ZN, 2015, NAT METHODS, V12, P959, DOI [10.1038/nmeth.3488, 10.1038/NMETH.3488]
[7]  
Chabbert CD, 2015, MOL SYST BIOL, V11
[8]  
Chen YW, 2012, NAT METHODS, V9, P609, DOI [10.1038/NMETH.1985, 10.1038/nmeth.1985]
[9]   Nucleosome Positioning, Nucleosome Spacing and the Nucleosome Code [J].
Clark, David J. .
JOURNAL OF BIOMOLECULAR STRUCTURE & DYNAMICS, 2010, 27 (06) :781-793
[10]   Multiplex single-cell profiling of chromatin accessibility by combinatorial cellular indexing [J].
Cusanovich, Darren A. ;
Daza, Riza ;
Adey, Andrew ;
Pliner, Hannah A. ;
Christiansen, Lena ;
Gunderson, Kevin L. ;
Steemers, Frank J. ;
Trapnell, Cole ;
Shendure, Jay .
SCIENCE, 2015, 348 (6237) :910-914