Recent developments in lanthanide-to-quantum dot FRET using time-gated fluorescence detection and photon upconversion

被引:54
作者
Dos Santos, Marcelina Cardoso [1 ]
Hildebrandt, Niko [1 ]
机构
[1] Univ Paris Saclay, Univ Paris Sud, Inst Elect Fondamentale, CNRS, F-91405 Orsay, France
关键词
Biosensor; Terbium; Multiplexing; Spectroscopy; Imaging; microRNA; Immunoassay; Immunostaining; Cells; Sensitivity; RESONANCE ENERGY-TRANSFER; RESOLVED FLUOROIMMUNOASSAY; CLINICAL DIAGNOSTICS; TRANSFER RELAY; NANOPARTICLES; LUMINESCENCE; DONORS; NANOCRYSTALS; IMMUNOASSAY; COMPLEXES;
D O I
10.1016/j.trac.2016.03.005
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Lanthanide (Ln) ions and quantum dots (QD) provide us with exceptional photophysical properties that cannot be found in any other luminescent material. Long luminescence lifetimes of supramolecular Ln complexes, combination of near infrared excitation and visible luminescence of Ln-doped upconversion nanoparticles, and color-tunability and high brightness of QDs have therefore been widely exploited for bioanalytical applications. One of the most frequently used techniques for analyzing biomolecular interactions is FRET (Forster resonance energy transfer), and the Ln-QD donor-acceptor FRET pair is one of the most versatile tools for FRET biosensing. Progress of technology development in biology, chemistry, and physics has significantly advanced Ln-to-QDFRET over the last five years, and current biosensing approaches include multiplexed detection of microRNAs, homogeneous clinical immunoassays, analysis of QD-bioconjugate morphology, and intra- and extracellular biosensing. Here, we will highlight the concepts and advantages of Ln-to-QD FRET and discuss recent progress and emerging applications. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:60 / 71
页数:12
相关论文
共 67 条
[1]  
Afsari H. S., 2016, TIME GATED TER UNPUB
[2]   Emerging non-traditional Forster resonance energy transfer configurations with semiconductor quantum dots: Investigations and applications [J].
Algar, W. Russ ;
Kim, Hyungki ;
Medintz, Igor L. ;
Hildebrandt, Niko .
COORDINATION CHEMISTRY REVIEWS, 2014, 263 :65-85
[3]   Assembly of a Concentric Forster Resonance Energy Transfer Relay on a Quantum Dot Scaffold: Characterization and Application to Multiplexed Protease Sensing [J].
Algar, W. Russ ;
Ancona, Mario G. ;
Malanoski, Anthony P. ;
Susumu, Kimihiro ;
Medintz, Igor L. .
ACS NANO, 2012, 6 (12) :11044-11058
[4]   Multiplexed Tracking of Protease Activity Using a Single Color of Quantum Dot Vector and a Time-Gated Forster Resonance Energy Transfer Relay [J].
Algar, W. Russ ;
Malanoski, Anthony P. ;
Susumu, Kimihiro ;
Stewart, Michael H. ;
Hildebrandt, Niko ;
Medintz, Igor L. .
ANALYTICAL CHEMISTRY, 2012, 84 (22) :10136-10146
[5]   Quantum Dots as Simultaneous Acceptors and Donors in Time-Gated Forster Resonance Energy Transfer Relays: Characterization and Biosensing [J].
Algar, W. Russ ;
Wegner, David ;
Huston, Alan L. ;
Blanco-Canosa, Juan B. ;
Stewart, Michael H. ;
Armstrong, Anika ;
Dawson, Philip E. ;
Hildebrandt, Niko ;
Medintz, Igor L. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (03) :1876-1891
[6]   Semiconductor Quantum Dots in Bioanalysis: Crossing the Valley of Death [J].
Algar, W. Russ ;
Susumu, Kimihiro ;
Delehanty, James B. ;
Medintz, Igor L. .
ANALYTICAL CHEMISTRY, 2011, 83 (23) :8826-8837
[7]   New opportunities in multiplexed optical bioanalyses using quantum dots and donor-acceptor interactions [J].
Algar, W. Russ ;
Krull, Ulrich J. .
ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2010, 398 (06) :2439-2449
[8]   Upconversion and anti-stokes processes with f and d ions in solids [J].
Auzel, F .
CHEMICAL REVIEWS, 2004, 104 (01) :139-173
[9]   FRET or no FRET: A quantitative comparison [J].
Berney, C ;
Danuser, G .
BIOPHYSICAL JOURNAL, 2003, 84 (06) :3992-4010
[10]   Evaluating Quantum Dot Performance in Homogeneous FRET Immunoassays for Prostate Specific Antigen [J].
Bhuckory, Shashi ;
Lefebvre, Olivier ;
Qiu, Xue ;
Wegner, Karl David ;
Hildebrandt, Niko .
SENSORS, 2016, 16 (02)