PULLBACK EXPONENTIAL ATTRACTORS FOR EVOLUTION PROCESSES IN BANACH SPACES: THEORETICAL RESULTS

被引:59
作者
Carvalho, Alexandre N. [1 ]
Sonner, Stefanie [1 ,2 ,3 ]
机构
[1] Univ Sao Paulo, Inst Ciencias Matemat & Comp, BR-13560970 Sao Carlos, SP, Brazil
[2] BCAM, E-48009 Bilbao, Basque Country, Spain
[3] Helmholtz Zentrum Munchen, Inst Biomath & Biometrie, D-85764 Neuherberg, Germany
基金
巴西圣保罗研究基金会;
关键词
Exponential attractors; non-autonomous dynamical systems; pullback attractors; fractal dimension;
D O I
10.3934/cpaa.2013.12.3047
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We construct exponential pullback attractors for time continuous asymptotically compact evolution processes in Banach spaces and derive estimates on the fractal dimension of the attractors. We also discuss the corresponding results for autonomous processes.
引用
收藏
页码:3047 / 3071
页数:25
相关论文
共 14 条
[1]  
[Anonymous], 1997, INFINITE DIMENSIONAL
[2]   Existence of pullback attractors for pullback asymptotically compact processes [J].
Caraballo, Tomas ;
Carvalho, Alexandre N. ;
Langa, Jose A. ;
Rivero, Felipe .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (3-4) :1967-1976
[3]  
Carvalho A, 2012, Attractors for Infinite-Dimensional Non-autonomous Dynamical Systems
[4]  
Cheban D. N., 2002, NONLINEAR DYN SYST T, V2, P9
[5]  
Chepyzhov V. V., 2002, ATTRACTORS EQUATIONS, V49
[6]  
Cholewa J.W., 2008, B UNIONE MAT ITAL, V9, P121
[7]   Pullback exponential attractors for nonautonomous equations Part I: Semi linear parabolic problems [J].
Czaja, Radoslaw ;
Efendiev, Messoud .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 381 (02) :748-765
[8]  
Eden A., 1994, RES APPL MATH
[9]   Exponential attractors for a nonlinear reaction-diffusion system in R3 [J].
Efendiev, M ;
Miranville, A ;
Zelik, S .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2000, 330 (08) :713-718
[10]   Exponential attractors and finite-dimensional reduction for non-autonomous dynamical systems [J].
Efendiev, M ;
Zelik, S ;
Miranville, A .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2005, 135 :703-730