In vitro Metabolism of Grandisin, a Lignan with Anti-chagasic Activity

被引:17
作者
Ferreira, Leandro De Santis [1 ,2 ]
Callejon, Daniel Roberto [2 ]
Engemann, Anna [3 ]
Cramer, Benedikt [3 ]
Humpf, Hans-Ulrich [3 ]
de Barros, Valeria Priscila [1 ]
Assis, Marilda das Dores [4 ]
da Silva, Denise Brentan [2 ]
de Albuquerque, Sergio [1 ]
Okano, Laura Tiemi [4 ]
Kato, Massuo Jorge [5 ]
Lopes, Norberto Peporine [1 ]
机构
[1] Univ Sao Paulo, Fac Ciencias Farmaceut Ribeirao Preto, Nucleo Pesquisa Prod Nat & Sintet, BR-14040903 Ribeirao Preto, SP, Brazil
[2] Lychnoflora Pesquisa & Desenvolvimento Prod Nat L, Ribeirao Preto, SP, Brazil
[3] Univ Munster, Inst Lebensmittelchem, D-4400 Munster, Germany
[4] Fac Filosofia Ciencias & Letras Ribeirao Preto, Dept Quim, Ribeirao Preto, SP, Brazil
[5] Univ Sao Paulo, Inst Quim, BR-14040903 Ribeirao Preto, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
tetrahydrofuran lignans; grandisin; in vitro metabolism; Piper solmsianum; Piperaceae; Jacobsen catalyst; DEGRADATION; MICROBIOTA; (-)-GRANDISIN; FLAVONOIDS; OXIDATION; MODEL;
D O I
10.1055/s-0032-1327876
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Tetrahydrofuran lignans represent a well-known group of phenolic compounds capable of acting as antiparasitic agents. In the search for new medicines for the treatment of Chagas disease, one promising compound is grandisin which has shown significant activity on trypomastigote forms of Trypanosoma cruzi. In this work, the in vitro metabolism of grandisin was studied in the pig cecum model and by biomimetic phase I reactions, aiming at an ensuing a preclinical pharmacokinetic investigation. Although grandisin exhibited no metabolization by the pig microbiota, one putative metabolite was formed in a biomimetic model using Jacobsen catalyst. The putative metabolite was tested against T. cruzi revealing loss of activity in comparison to grandisin.
引用
收藏
页码:1939 / 1941
页数:3
相关论文
共 25 条
[1]  
Acef SA, 2005, BR Patent, Patent No. [PI0503951-7, 05039517]
[2]   In vitro metabolism of flax lignans by ruminal and faecal microbiota of dairy cows [J].
Cortes, C. ;
Gagnon, N. ;
Benchaar, C. ;
da Silva, D. ;
Santos, G. T. D. ;
Petit, H. V. .
JOURNAL OF APPLIED MICROBIOLOGY, 2008, 105 (05) :1585-1594
[3]   Intestinal Metabolism of Two A-type Procyanidins Using the Pig Cecum Model: Detailed Structure Elucidation of Unknown Catabolites with Fourier Transform Mass Spectrometry (FTMS) [J].
Engemann, Anna ;
Huebner, Florian ;
Rzeppa, Sebastian ;
Humpf, Hans-Ulrich .
JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2012, 60 (03) :749-757
[4]  
Gertsch J, 2003, PLANTA MED, V69, P420, DOI 10.1055/s-2003-39706
[5]   Deconjugation and degradation of flavonol glycosides by pig cecal microbiota characterized by fluorescence in situ hybridization (FISH) [J].
Hein, Eva-Maria ;
Rose, Katrin ;
Van't Slot, Gordon ;
Friedrich, Alexander W. ;
Humpf, Hans-Ulrich .
JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2008, 56 (06) :2281-2290
[6]   EXTRACTIVES FROM LITSEA SPECIES .2. 2 LIGNANS FROM LITSEA GRANDIS AND LITSEA-GRACILIPES [J].
HOLLOWAY, D ;
SCHEINMANN, F .
PHYTOCHEMISTRY, 1974, 13 (07) :1233-1236
[7]   Metabolism of anthocyanins and their phenolic degradation products by the intestinal microflora [J].
Keppler, K ;
Humpf, HU .
BIOORGANIC & MEDICINAL CHEMISTRY, 2005, 13 (17) :5195-5205
[8]   Metabolism of quercetin and rutin by the pig caecal microflora prepared by freeze-preservation [J].
Keppler, Katrin ;
Hein, Eva-Maria ;
Humpf, Hans-Ulrich .
MOLECULAR NUTRITION & FOOD RESEARCH, 2006, 50 (08) :686-695
[9]   Lignans, gamma-lactones and propiophenones of Virola surinamensis [J].
Lopes, NP ;
Blumenthal, EED ;
Cavalheiro, AJ ;
Kato, MJ ;
Yoshida, M .
PHYTOCHEMISTRY, 1996, 43 (05) :1089-1092
[10]   Flavonoids and lignans from Virola surinamensis twigs and their in vitro activity against Trypanosoma cruzi [J].
Lopes, NP ;
Chicaro, P ;
Kato, MJ ;
Albuquerque, S ;
Yoshida, M .
PLANTA MEDICA, 1998, 64 (07) :667-669