ISLES 2015-A public evaluation benchmark for ischemic stroke lesion segmentation from multispectral MRI

被引:332
作者
Maier, Oskar [1 ,2 ]
Menze, Bjoern H. [8 ,9 ]
von der Gablentz, Janina [3 ]
Hani, Levin [6 ]
Heinrich, Mattias P. [1 ]
Liebrand, Matthias [1 ,3 ]
Winzeck, Stefan [8 ,9 ]
Basit, Abdul [17 ]
Bentley, Paul [12 ]
Chen, Liang [11 ,12 ]
Christiaens, Daan [22 ,23 ,24 ]
Dutil, Francis [28 ]
Egger, Karl [14 ]
Feng, Chaolu [15 ]
Glocker, Ben [11 ]
Goetz, Michael [21 ]
Haeck, Tom [22 ,23 ,24 ]
Halme, Hanna-Leena [18 ,19 ,20 ]
Havaei, Mohammad [28 ]
Iftekharuddin, Khan M. [25 ]
Jodoin, Pierre-Marc [28 ]
Kamnitsas, Konstantinos [11 ]
Kellner, Elias [13 ]
Korvenoja, Antti [18 ,19 ]
Larochelle, Hugo [28 ]
Ledig, Christian [11 ]
Lee, Jia-Hong [27 ]
Maes, Frederik [22 ,23 ,24 ]
Mahmood, Qaiser [16 ,17 ]
Maier-Hein, Klaus H. [21 ]
McKinley, Richard [7 ]
Muschelli, John [26 ]
Pal, Chris [29 ]
Pei, Linmin [25 ]
Rangarajan, Janaki Raman [22 ,23 ,24 ]
Reza, Syed M. S. [25 ]
Robben, David [22 ,23 ,24 ]
Rueckert, Daniel [11 ]
Salli, Eero [18 ,19 ]
Suetens, Paul [22 ,23 ,24 ]
Wang, Ching-Wei [27 ]
Wilms, Matthias [1 ]
Kirschke, Jan S. [10 ]
Kraemer, Ulrike M. [3 ,4 ]
Muente, Thomas F. [3 ]
Schramme, Peter [5 ]
Wiest, Roland [7 ]
Handels, Heinz [1 ]
Reyes, Mauricio [6 ]
机构
[1] Univ Lubeck, Inst Med Informat, Lubeck, Germany
[2] Univ Lubeck, Grad Sch Comp Med & Live Sci, Lubeck, Germany
[3] Univ Lubeck, Dept Neurol, Lubeck, Germany
[4] Univ Lubeck, Inst Psychol 2, Lubeck, Germany
[5] Univ Med Ctr Lubeck, Inst Neuroradiol, Lubeck, Germany
[6] Univ Bern, Inst Surg Technol & Biomech, Bern, Switzerland
[7] Inselspital Bern, Dept Diagnost & Intervent Neuroradiol, Bern, Switzerland
[8] Tech Univ Munich, Inst Adv Study, Munich, Germany
[9] Tech Univ Munich, Dept Comp Sci, Munich, Germany
[10] Tech Univ Munich, Klinikum Rechts Isar, Dept Neuroradiol, Munich, Germany
[11] Imperial Coll London, Dept Comp, Biomed Image Anal Grp, London, England
[12] Imperial Coll London, Dept Med, Div Brain Sci, London, England
[13] Univ Med Ctr Freiburg, Med Phys, Dept Radiol, Freiburg, Germany
[14] Univ Med Ctr Freiburg, Dept Neuroradiol, Freiburg, Germany
[15] Northeastern Univ, Coll Informat Sci & Engn, Shenyang, Liaoning, Peoples R China
[16] Chalmers Univ Technol, Signals & Syst, Gothenburg, Sweden
[17] Pakistan Inst Nucl Sci & Technol, Islamabad, Pakistan
[18] Univ Helsinki, Radiol, HUS Med Imaging Ctr, Helsinki, Finland
[19] Helsinki Univ Hosp, Helsinki, Finland
[20] Aalto Univ Sch Sci, Dept Neurosci & Biomed Engn NBE, Aalto, Finland
[21] German Canc Res Ctr, Jr Grp Med Image Comp, Heidelberg, Germany
[22] Katholieke Univ Leuven, Dept Elect Engn, ESAT PSI, Leuven, Belgium
[23] Katholieke Univ Leuven, Med IT Dept, iMinds, Leuven, Belgium
[24] UZ Leuven, Med Imaging Res Ctr, Leuven, Belgium
[25] Old Dominion Univ, Dept Elect & Comp Engn, Vis Lab, Norfolk, VA USA
[26] Johns Hopkins Bloomberg Sch Publ Hlth, Dept Biostat, Baltimore, MD USA
[27] Natl Taiwan Univ Sci & Technol, Grad Inst Biomed Engn, Taipei, Taiwan
[28] Univ Sherbrooke, Sherbrooke, PQ, Canada
[29] Ecole Polytech, Montreal, PQ, Canada
基金
美国国家卫生研究院; 加拿大自然科学与工程研究理事会; 比利时弗兰德研究基金会;
关键词
Ischemic stroke; Segmentation; MRI; Challenge; Benchmark; Comparison; DIFFUSION; BRAIN; ALGORITHMS; REGISTRATION; REPERFUSION; VALIDATION; INFARCTION; PREDICTION; VOLUME; INJURY;
D O I
10.1016/j.media.2016.07.009
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Ischemic stroke is the most common cerebrovascular disease, and its diagnosis, treatment, and study relies on non-invasive imaging. Algorithms for stroke lesion segmentation from magnetic resonance imaging (MRI) volumes are intensely researched, but the reported results are largely incomparable due to different datasets and evaluation schemes. We approached this urgent problem of comparability with the Ischemic Stroke Lesion Segmentation (ISLES) challenge organized in conjunction with the MICCAI 2015 conference. In this paper we propose a common evaluation framework, describe the publicly available datasets, and present the results of the two sub-challenges: Sub-Acute Stroke Lesion Segmentation (SISS) and Stroke Perfusion Estimation (SPES). A total of 16 research groups participated with a wide range of state-of-the-art automatic segmentation algorithms. A thorough analysis of the obtained data enables a critical evaluation of the current state-of-the-art, recommendations for further developments, and the identification of remaining challenges. The segmentation of acute perfusion lesions addressed in SPES was found to be feasible. However, algorithms applied to sub-acute lesion segmentation in SISS still lack accuracy. Overall, no algorithmic characteristic of any method was found to perform superior to the others. Instead, the characteristics of stroke lesion appearances, their evolution, and the observed challenges should be studied in detail. The annotated ISLES image datasets continue to be publicly available through an online evaluation system to serve as an ongoing benchmarking resource (www.isles-challenge.org). (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:250 / 269
页数:20
相关论文
共 82 条
  • [21] Breiman L., 2001, Machine Learning, V45, P5
  • [22] Volumetric measurements of right cerebral hemisphere infarction:: use of a semiautomatic MRI segmentation technique
    Dastidar, P
    Heinonen, T
    Ahonen, JP
    Jehkonen, M
    Molnár, G
    [J]. COMPUTERS IN BIOLOGY AND MEDICINE, 2000, 30 (01) : 41 - 54
  • [23] Fiez JA, 2000, HUM BRAIN MAPP, V9, P192, DOI 10.1002/(SICI)1097-0193(200004)9:4<192::AID-HBM2>3.0.CO
  • [24] 2-Y
  • [25] ADAPTIVE WEIGHTED FUSION OF MULTIPLE MR SEQUENCES FOR BRAIN LESION SEGMENTATION
    Forbes, F.
    Doyle, S.
    Garcia-Lorenzo, D.
    Barillot, C.
    Dojat, M.
    [J]. 2010 7TH IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: FROM NANO TO MACRO, 2010, : 69 - 72
  • [26] Comparison of 10 TTP and Tmax Estimation Techniques for MR Perfusion-Diffusion Mismatch Quantification in Acute Stroke
    Forkert, N. D.
    Kaesemann, P.
    Treszl, A.
    Siemonsen, S.
    Cheng, B.
    Handels, H.
    Fiehler, J.
    Thomalla, G.
    [J]. AMERICAN JOURNAL OF NEURORADIOLOGY, 2013, 34 (09) : 1697 - 1703
  • [27] Dynamic classifier selection for One-vs-One strategy: Avoiding non-competent classifiers
    Galar, Mikel
    Fernandez, Alberto
    Barrenechea, Edurne
    Bustince, Humberto
    Herrera, Francisco
    [J]. PATTERN RECOGNITION, 2013, 46 (12) : 3412 - 3424
  • [28] Non-locally regularized segmentation of multiple sclerosis lesion from multi-channel MRI data
    Gao, Jingjing
    Li, Chunming
    Feng, Chaolu
    Xie, Mei
    Yin, Yilong
    Davatzikos, Christos
    [J]. MAGNETIC RESONANCE IMAGING, 2014, 32 (08) : 1058 - 1066
  • [29] Extremely randomized trees
    Geurts, P
    Ernst, D
    Wehenkel, L
    [J]. MACHINE LEARNING, 2006, 63 (01) : 3 - 42
  • [30] Automated detection of brain abnormalities in neonatal hypoxia ischemic injury from MR images
    Ghosh, Nirmalya
    Sun, Yu
    Bhanu, Bir
    Ashwal, Stephen
    Obenaus, Andre
    [J]. MEDICAL IMAGE ANALYSIS, 2014, 18 (07) : 1059 - 1069