WEAK TYPE COMMUTATOR AND LIPSCHITZ ESTIMATES: RESOLUTION OF THE NAZAROV-PELLER CONJECTURE

被引:25
作者
Caspers, M. [1 ]
Potapov, D. [2 ]
Sukochev, F. [2 ]
Zanin, D. [2 ]
机构
[1] Univ Munster, Fachbereich Math & Informat, Einsteinstr 62, D-48149 Munster, Germany
[2] UNSW, Sch Math & Stat, Kensington, NSW 2052, Australia
关键词
ABSOLUTE VALUE; OPERATOR; NORMS;
D O I
10.1353/ajm.2019.0019
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let M be a semi-finite von Neumann algebra and let f : R -> C be a Lipschitz function. If A, B is an element of M are self-adjoint operators such that [A, B] is an element of L-1(M), then parallel to[f (A), B]parallel to(1, infinity) <= C-abs parallel to f'parallel to(infinity)parallel to[A, B]parallel to(1), where C-abs is an absolute constant independent of f , M and A, B and parallel to.parallel to(1,infinity) denotes the weak L-1 -norm. If X, Y is an element of M are self-adjoint operators such that X - Y is an element of L-1(M), then parallel to f(X) - f(Y)parallel to(1,infinity )<= C-abs parallel to f'parallel to(infinity)parallel to X-Y parallel to(1). This result resolves a conjecture raised by F. Nazarov and V. Peller implying a couple of existing results in perturbation theory.
引用
收藏
页码:593 / 610
页数:18
相关论文
共 30 条
  • [1] [Anonymous], 1972, ZAP NAUCN SEM LENING
  • [2] [Anonymous], 1964, First Math. Summer School
  • [3] [Anonymous], VESTNIK LENINGRAD U
  • [4] Birman M., 1987, SOVIET SER
  • [5] Birman M. Sh., 1966, Probl. Mat. Fiz., V1, P33
  • [6] WEAK TYPE ESTIMATES FOR THE ABSOLUTE VALUE MAPPING
    Caspers, M.
    Potapov, D.
    Sukochev, F.
    Zanin, D.
    [J]. JOURNAL OF OPERATOR THEORY, 2015, 73 (02) : 361 - 384
  • [7] The best constants for operator Lipschitz functions on Schatten classes
    Caspers, M.
    Montgomery-Smith, S.
    Potapov, D.
    Sukochev, F.
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2014, 267 (10) : 3557 - 3579
  • [8] de la Salle M., PREPRINT
  • [9] Double operator integrals
    de Pagter, B
    Witvliet, H
    Sukochev, FA
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2002, 192 (01) : 52 - 111
  • [10] ON LP MULTIPLIERS
    DELEEUW, K
    [J]. ANNALS OF MATHEMATICS, 1965, 81 (02) : 364 - &