Mechanical behaviour of cyclic olefin copolymer/exfoliated graphite nanoplatelets nanocomposites foamed by supercritical carbon dioxide

被引:14
作者
Biani, A. [1 ,2 ]
Dorigato, A. [1 ,2 ]
Bonani, W. [1 ,2 ,3 ,4 ]
Slouf, M. [5 ]
Pegoretti, A. [1 ,2 ]
机构
[1] Univ Trento, Dept Ind Engn, Via Sommar 9, I-38123 Trento, Italy
[2] Univ Trento, INSTM Res Unit, Via Sommar 9, I-38123 Trento, Italy
[3] Univ Trento, Dept Ind Engn, Via Regole 101, I-38123 Trento, Italy
[4] Univ Trento, BIOtech Res Ctr, Via Regole 101, I-38123 Trento, Italy
[5] Acad Sci Czech Republic, Inst Macromol Chem, Heyrovsky Sq 2, Prague 16206 6, Czech Republic
来源
EXPRESS POLYMER LETTERS | 2016年 / 10卷 / 12期
关键词
nanocomposites; foams; graphite nanoplatelets; thermomechanical properties; creep; POLYPROPYLENE/CLAY NANOCOMPOSITES; POLYMER NANOCOMPOSITES; SILICA NANOCOMPOSITES; THERMAL-STABILITY; COPOLYMER BLENDS; GRAPHENE; COMPOSITES; TENSILE; CO2; PARTICLES;
D O I
10.3144/expresspolymlett.2016.91
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
A cycloolefin copolymer matrix was melt mixed with exfoliated graphite nanoplatelets (xGnP) and the resulting nanocomposites were foamed by supercritical carbon dioxide. The density of the obtained foams decreased with the foaming pressure. Moreover, xGnP limited the cell growth during the expansion process thus reducing the cell diameter (from 1.08 to 0.22 mm with an XGnP amount of 10 wt% at 150 bar) and increasing the cell density (from 12 to 45 cells/mm(2) with a nanofiller content of 10 wt% at 150 bar). Electron microscopy observations of foams evidenced exfoliation and orientation of the nanoplatelets along the cell walls. Quasi-static compressive tests and tensile creep tests on foams clearly indicated that xGnP improved the modulus (up to a factor of 10 for a xGnP content of 10 wt%) and the creep stability.
引用
收藏
页码:977 / 989
页数:13
相关论文
共 47 条
[1]  
Ajayan P.M., 2006, Nanocomposite science and technology
[2]   Quantifying microstructure, electrical and mechanical properties of carbon fiber and expanded graphite filled cyclic olefin copolymer composites [J].
Akin, Dincer ;
Kasgoz, Alper ;
Durmus, Ali .
COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2014, 60 :44-51
[3]  
[Anonymous], 2012, HDB CARBON GRAPHITE
[4]   Multifunctional nanocomposite foams based on polypropylene with carbon nanofillers [J].
Antunes, Marcelo ;
Gedler, Gabriel ;
Ignacio Velasco, Jose .
JOURNAL OF CELLULAR PLASTICS, 2013, 49 (03) :259-279
[5]  
Arndt M, 1998, MACROMOL CHEM PHYSIC, V199, P1221
[6]   Foaming Behavior of High-Melt Strength Polypropylene/Clay Nanocomposites [J].
Bhattacharya, Subhendu ;
Gupta, Rahul K. ;
Jollands, Margaret ;
Battacharya, Sati N. .
POLYMER ENGINEERING AND SCIENCE, 2009, 49 (10) :2070-2084
[7]   High-density polyethylene reinforced with submicron titania particles [J].
Bondioli, Federica ;
Dorigato, Andrea ;
Fabbri, Paola ;
Messori, Massimo ;
Pegoretti, Alessandro .
POLYMER ENGINEERING AND SCIENCE, 2008, 48 (03) :448-457
[8]   An experimental and theoretical investigation of the compressive properties of multi-walled carbon nanotube/poly(methyl methacrylate) nanocomposite foams [J].
Chen, Limeng ;
Schadler, Linda S. ;
Ozisik, Rahmi .
POLYMER, 2011, 52 (13) :2899-2909
[9]   Porous materials and supercritical fluids [J].
Cooper, AI .
ADVANCED MATERIALS, 2003, 15 (13) :1049-1059
[10]   Linear low-density polyethylene/silica micro- and nanocomposites: dynamic rheological measurements and modelling [J].
Dorigato, A. ;
Pegoretti, A. ;
Penati, A. .
EXPRESS POLYMER LETTERS, 2010, 4 (02) :115-129