Mechanism and Optimization of a Graphene/Silicon Hybrid Diode Terahertz Modulator

被引:10
作者
Li, Yuanpeng [1 ]
Zhang, Dainan [1 ]
Jia, Ruitao [1 ]
Li, Xuesong [1 ]
Liao, Yulong [1 ]
Wen, Qi-Ye [1 ]
Zhong, Zhiyong [1 ]
Wen, Tianlong [1 ]
机构
[1] Univ Elect Sci & Technol China, State Key Lab Elect Thin Films & Integrated Devic, Chengdu 610054, Sichuan, Peoples R China
来源
ACS APPLIED ELECTRONIC MATERIALS | 2020年 / 2卷 / 07期
基金
中国国家自然科学基金;
关键词
graphene/silicon hybrid diode; terahertz modulation; gold nanoparticles; modulation mechanism; band theory;
D O I
10.1021/acsaelm.0c00250
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Graphene/silicon hybrid diodes have been proven efficient for broadband terahertz (THz) modulation with electrical and optical stimuli. However, the optimal protocol to apply optical and electrical stimuli has not been well-determined to obtain the best performance. Here, band theory of the hybrid diode has been used to analyze the underlying modulation mechanism and to help determine the optimal modulation protocol. Monolayer gold nanoparticles (AuNPs) were coated on the graphene/silicon hybrid diode to enhance the modulation performance. Both high modulation depth (similar to 93%) and modulation rate (similar to 4.6 kHz) were obtained with the AuNP-coated hybrid diode using the proper modulation method. To explore the underlying mechanism for a graphene/silicon hybrid diode THz modulator, this work could throw light on other material systems for THz modulation.
引用
收藏
页码:1953 / 1959
页数:7
相关论文
共 50 条
  • [1] Graphene-semiconductor heterojunction sheds light on emerging photovoltaics
    Behura, Sanjay K.
    Wang, Chen
    Wen, Yu
    Berry, Vikas
    [J]. NATURE PHOTONICS, 2019, 13 (05) : 312 - 318
  • [2] Ultrahigh electron mobility in suspended graphene
    Bolotin, K. I.
    Sikes, K. J.
    Jiang, Z.
    Klima, M.
    Fudenberg, G.
    Hone, J.
    Kim, P.
    Stormer, H. L.
    [J]. SOLID STATE COMMUNICATIONS, 2008, 146 (9-10) : 351 - 355
  • [3] Bonaccorso F, 2010, NAT PHOTONICS, V4, P611, DOI [10.1038/NPHOTON.2010.186, 10.1038/nphoton.2010.186]
  • [4] A single-pixel terahertz imaging system based on compressed sensing
    Chan, Wai Lam
    Charan, Kriti
    Takhar, Dharmpal
    Kelly, Kevin F.
    Baraniuk, Richard G.
    Mittleman, Daniel M.
    [J]. APPLIED PHYSICS LETTERS, 2008, 93 (12)
  • [5] Active terahertz metamaterial devices
    Chen, Hou-Tong
    Padilla, Willie J.
    Zide, Joshua M. O.
    Gossard, Arthur C.
    Taylor, Antoinette J.
    Averitt, Richard D.
    [J]. NATURE, 2006, 444 (7119) : 597 - 600
  • [6] All optically driven memory device for terahertz waves
    Chen, Si-Chao
    Yuan, Hong-Kuan
    Zhai, Zhao-Hui
    Du, Liang-Hui
    Zhong, Sen-Cheng
    Zhu, Hong-Fu
    Shi, Qi-Wu
    Huang, Wan-Xia
    Li, Ze-Ren
    Zhu, Li-Guo
    [J]. OPTICS LETTERS, 2020, 45 (01) : 236 - 239
  • [7] Terahertz wave near-field compressive imaging with a spatial resolution of over λ/100
    Chen, Si-Chao
    Du, Liang-Hui
    Meng, Kun
    Li, Jiang
    Zhai, Zhao-Hui
    Shi, Qi-Wu
    Li, Ze-Ren
    Zhu, Li-Guo
    [J]. OPTICS LETTERS, 2019, 44 (01) : 21 - 24
  • [8] Mechanical Terahertz Modulation Based on Single-Layered Graphene
    Cheng, Long
    Jin, Zuanming
    Ma, Zongwei
    Su, Fuhai
    Zhao, Yang
    Zhang, Yongzhuan
    Su, Tongyu
    Sun, Yan
    Xu, Xueli
    Meng, Zhi
    Bian, Yuecheng
    Sheng, Zhigao
    [J]. ADVANCED OPTICAL MATERIALS, 2018, 6 (07):
  • [9] Terahertz circular dichroism spectroscopy of biomaterials enabled by kirigami polarization modulators
    Choi, Won Jin
    Cheng, Gong
    Huang, Zhengyu
    Zhang, Shuai
    Norris, Theodore B.
    Kotov, Nicholas A.
    [J]. NATURE MATERIALS, 2019, 18 (08) : 820 - 826
  • [10] Measurement of the optical absorption spectra of epitaxial graphene from terahertz to visible
    Dawlaty, Jahan M.
    Shivaraman, Shriram
    Strait, Jared
    George, Paul
    Chandrashekhar, Mvs
    Rana, Farhan
    Spencer, Michael G.
    Veksler, Dmitry
    Chen, Yunqing
    [J]. APPLIED PHYSICS LETTERS, 2008, 93 (13)