Homozygosity mapping provides supporting evidence of pathogenicity in recessive Mendelian disease

被引:28
作者
Wakeling, Matthew Neil [1 ]
Laver, Thomas William [1 ]
Wright, Caroline Fiona [1 ]
De Franco, Elisa [1 ]
Stals, Karen Lucy [2 ]
Patch, Ann-Marie [3 ]
Hattersley, Andrew Tym [1 ]
Flanagan, Sarah Elizabeth [1 ]
Ellard, Sian [1 ,2 ]
机构
[1] Univ Exeter, Inst Biomed & Clin Sci, Exeter, Devon, England
[2] Royal Devon & Exeter NHS Fdn Trust, Dept Mol Genet, Exeter, Devon, England
[3] QIMR Berghofer, Herston, Qld, Australia
基金
英国惠康基金;
关键词
variant interpretation; ACMG guidelines; Mendelian disease; recessive disease; genetic diagnosis; SEQUENCE;
D O I
10.1038/s41436-018-0281-4
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Purpose: One of the greatest challenges currently facing those studying Mendelian disease is identifying the pathogenic variant from the long list produced by a next-generation sequencing test. We investigate the predictive ability of homozygosity mapping for identifying the regions likely to contain the causative variant. Methods: We use 179 homozygous pathogenic variants from three independent cohorts to investigate the predictive power of homozygosity mapping. Results: We demonstrate that homozygous pathogenic variants in our cohorts are disproportionately likely to be found within one of the largest regions of homozygosity: 80% of pathogenic variants are found in a homozygous region that is in the ten largest regions in a sample. The maximal predictive power is achieved in patients with <8% homozygosity and variants >3 Mb from a telomere; this gives an area under the curve (AUC) of 0.735 and results in 92% of the causative variants being in one of the ten largest homozygous regions. Conclusion: This predictive power can be used to prioritize the list of candidate variants in gene discovery studies. When classifying a homozygous variant the size and rank of the region of homozygosity in which the candidate variant is located can also be considered as supporting evidence for pathogenicity.
引用
收藏
页码:982 / 986
页数:5
相关论文
共 15 条
  • [1] Whole-exome sequencing to analyze population structure, parental inbreeding, and familial linkage
    Belkadi, Aziz
    Pedergnana, Vincent
    Cobat, Aurelie
    Itan, Yuval
    Vincent, Quentin B.
    Abhyankar, Avinash
    Shang, Lei
    El Baghdadi, Jamila
    Bousfiha, Aziz
    Alcais, Alexandre
    Boisson, Bertrand
    Casanova, Jean-Laurent
    Abel, Laurent
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2016, 113 (24) : 6713 - 6718
  • [2] Discovering genotypes underlying human phenotypes: past successes for mendelian disease, future approaches for complex disease
    Botstein, D
    Risch, N
    [J]. NATURE GENETICS, 2003, 33 (Suppl 3) : 228 - 237
  • [3] DECIPHER: database for the interpretation of phenotype-linked plausibly pathogenic sequence and copy-number variation
    Bragin, Eugene
    Chatzimichali, Eleni A.
    Wright, Caroline F.
    Hurles, Matthew E.
    Firth, Helen V.
    Bevan, A. Paul
    Swaminathan, G. Jawahar
    [J]. NUCLEIC ACIDS RESEARCH, 2014, 42 (D1) : D993 - D1000
  • [4] Improved genetic testing for monogenic diabetes using targeted next-generation sequencing
    Ellard, S.
    Allen, H. Lango
    De Franco, E.
    Flanagan, S. E.
    Hysenaj, G.
    Colclough, K.
    Houghton, J. A. L.
    Shepherd, M.
    Hattersley, A. T.
    Weedon, M. N.
    Caswell, R.
    [J]. DIABETOLOGIA, 2013, 56 (09) : 1958 - 1963
  • [5] Large-scale discovery of novel genetic causes of developmental disorders
    Fitzgerald, T. W.
    Gerety, S. S.
    Jones, W. D.
    van Kogelenberg, M.
    King, D. A.
    McRae, J.
    Morley, K. I.
    Parthiban, V.
    Al-Turki, S.
    Ambridge, K.
    Barrett, D. M.
    Bayzetinova, T.
    Clayton, S.
    Coomber, E. L.
    Gribble, S.
    Jones, P.
    Krishnappa, N.
    Mason, L. E.
    Middleton, A.
    Miller, R.
    Prigmore, E.
    Rajan, D.
    Sifrim, A.
    Tivey, A. R.
    Ahmed, M.
    Akawi, N.
    Andrews, R.
    Anjum, U.
    Archer, H.
    Armstrong, R.
    Balasubramanian, M.
    Banerjee, R.
    Baralle, D.
    Batstone, P.
    Baty, D.
    Bennett, C.
    Berg, J.
    Bernhard, B.
    Bevan, A. P.
    Blair, E.
    Blyth, M.
    Bohanna, D.
    Bourdon, L.
    Bourn, D.
    Brady, A.
    Bragin, E.
    Brewer, C.
    Brueton, L.
    Brunstrom, K.
    Bumpstead, S. J.
    [J]. NATURE, 2015, 519 (7542) : 223 - +
  • [6] Heyman D. P., 1982, Stochastic Models in Operations Research
  • [7] The current state of clinical interpretation of sequence variants
    Hoskinson, Derick C.
    Dubuc, Adrian M.
    Mason-Suares, Heather
    [J]. CURRENT OPINION IN GENETICS & DEVELOPMENT, 2017, 42 : 33 - 39
  • [8] Recessive nephrocerebellar syndrome on the Galloway-Mowat syndrome spectrum is caused by homozygous protein-truncating mutations of WDR73
    Jinks, Robert N.
    Puffenberger, Erik G.
    Baple, Emma
    Harding, Brian
    Crino, Peter
    Fogo, Agnes B.
    Wenger, Olivia
    Xin, Baozhong
    Koehler, Alanna E.
    McGlincy, Madeleine H.
    Provencher, Margaret M.
    Smith, Jeffrey D.
    Linh Tran
    Al Turki, Saeed
    Chioza, Barry A.
    Cross, Harold
    Harlalka, Gaurav V.
    Hurles, Matthew E.
    Maroofian, Reza
    Heaps, Adam D.
    Morton, Mary C.
    Stempak, Lisa
    Hildebrandt, Friedhelm
    Sadowski, Carolin E.
    Zaritsky, Joshua
    Campellone, Kenneth
    Morton, D. Holmes
    Wang, Heng
    Crosby, Andrew
    Strauss, Kevin A.
    [J]. BRAIN, 2015, 138 : 2173 - 2190
  • [9] Variant effect prediction tools assessed using independent, functional assay-based datasets: implications for discovery and diagnostics
    Mahmood, Khalid
    Jung, Chol-hee
    Philip, Gayle
    Georgeson, Peter
    Chung, Jessica
    Pope, Bernard J.
    Park, Daniel J.
    [J]. HUMAN GENOMICS, 2017, 11
  • [10] Genomic Patterns of Homozygosity in Worldwide Human Populations
    Pemberton, Trevor J.
    Absher, Devin
    Feldman, Marcus W.
    Myers, Richard M.
    Rosenberg, Noah A.
    Li, Jun Z.
    [J]. AMERICAN JOURNAL OF HUMAN GENETICS, 2012, 91 (02) : 275 - 292