Three-dimensional nitrogen doped hierarchically porous carbon aerogels with ultrahigh specific surface area for high-performance supercapacitors and flexible micro-supercapacitors

被引:146
作者
Gao, Yunfang [1 ]
Zheng, Shuanghao [2 ,4 ]
Fu, Hanli [1 ]
Ma, Jiaxin [2 ,3 ,4 ]
Xu, Xin [1 ]
Guan, Li [1 ]
Wu, Haihua [1 ]
Wu, Zhong-Shuai [2 ,4 ]
机构
[1] Zhejiang Univ Technol, Coll Chem Engn, State Key Lab Breeding Base Green Chem Synth Tech, 18 Chaowang Rd, Hangzhou 310014, Peoples R China
[2] Chinese Acad Sci, Dalian Inst Chem Phys, State Key Lab Catalysis, 457 Zhongshan Rd, Dalian 116023, Peoples R China
[3] Chinese Acad Sci, Dalian Natl Lab Clean Energy, 457 Zhongshan Rd, Dalian 116023, Peoples R China
[4] Univ Chinese Acad Sci, 19 A Yuquan Rd, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
Carbon aerogel; Nitrogen doped; Supercapacitors; Micro-supercapacitors; Energy storage; GRAPHENE; CARBONIZATION; ELECTRODES; BATTERIES; STRATEGY; OXIDE;
D O I
10.1016/j.carbon.2020.06.063
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Rational design of electrode materials with tunable pore structure and large specific surface area (SSA) are of great importance for boosting high-performance supercapacitors (SCs) and micro-supercapacitors (MSCs). Here we develop a nitrogen doped hierarchically porous carbon aerogel (NPCA) derived from chitosan biomass via a combined chelation reaction and freeze-drying procedures for SCs and MSCs. The NPCA exhibits three-dimensional (3D) reticular texture with ultrahigh SSA of 2529 m(2) g(-1), which is highly responsible for accommodating large charge storage. The interconnected micro-/mesopores distributed on the continuous carbon network can create more adsorption sites and commodious channels for fast ion diffusion, yet offer high electrical conductivity for rapid electron transport. As a result, the assembled symmetric SC using NPCA exhibits enhanced electrochemical performance with energy density of 6.8 Wh kg(-1) at power density of 251 W kg(-1). More importantly, the solid-state flexible NPCA-MSC presents high areal capacitance of 25.6 mF cm(-2), outstanding energy density of 0.78 mWh cm(-2), exceptional cyclability with only 1% capacitance fading after 10000 cycles, and superior flexibility with capacitance retention of 99%. Therefore, this biomass-derived carbon strategy will provide numerous opportunities to develop low-cost 3D micro-/mesoporous heteroatom-doped carbon aerogels for high-performance SCs and MSCs in a large scale. (c) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页码:701 / 709
页数:9
相关论文
共 63 条
[1]   Hydrothermal preparation of fluorinated graphene hydrogel for high-performance supercapacitors [J].
An, Haoran ;
Li, Yu ;
Long, Peng ;
Gao, Yi ;
Qin, Chengqun ;
Cao, Chen ;
Feng, Yiyu ;
Feng, Wei .
JOURNAL OF POWER SOURCES, 2016, 312 :146-155
[2]  
An KH, 2001, ADV MATER, V13, P497, DOI 10.1002/1521-4095(200104)13:7<497::AID-ADMA497>3.0.CO
[3]  
2-H
[4]   Advanced carbon aerogels for energy applications [J].
Biener, Juergen ;
Stadermann, Michael ;
Suss, Matthew ;
Worsley, Marcus A. ;
Biener, Monika M. ;
Rose, Klint A. ;
Baumann, Theodore F. .
ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (03) :656-667
[5]   Atomic layer deposition of vanadium oxide on carbon nanotubes for high-power supercapacitor electrodes [J].
Boukhalfa, Sofiane ;
Evanoff, Kara ;
Yushin, Gleb .
ENERGY & ENVIRONMENTAL SCIENCE, 2012, 5 (05) :6872-6879
[6]   Designed formation of hollow particle-based nitrogen-doped carbon nanofibers for high-performance supercapacitors [J].
Chen, Li-Feng ;
Lu, Yan ;
Yu, Le ;
Lou, Xiong Wen .
ENERGY & ENVIRONMENTAL SCIENCE, 2017, 10 (08) :1777-1783
[7]   Three-Dimensional Heteroatom-Doped Carbon Nanofiber Networks Derived from Bacterial Cellulose for Supercapacitors [J].
Chen, Li-Feng ;
Huang, Zhi-Hong ;
Liang, Hai-Wei ;
Gao, Huai-Ling ;
Yu, Shu-Hong .
ADVANCED FUNCTIONAL MATERIALS, 2014, 24 (32) :5104-5111
[8]   Synthesis of Nitrogen-Doped Porous Carbon Nanofibers as an Efficient Electrode Material for Supercapacitors [J].
Chen, Li-Feng ;
Zhang, Xu-Dong ;
Liang, Hai-Wei ;
Kong, Mingguang ;
Guan, Qing-Fang ;
Chen, Ping ;
Wu, Zhen-Yu ;
Yu, Shu-Hong .
ACS NANO, 2012, 6 (08) :7092-7102
[9]   Porous, single crystalline titanium nitride nanoplates grown on carbon fibers: excellent counter electrodes for low-cost, high performance, fiber-shaped dye-sensitized solar cells [J].
Chen, Liang ;
Dai, Hui ;
Zhou, Yong ;
Hu, Yingjie ;
Yu, Tao ;
Liu, Jianguo ;
Zou, Zhigang .
CHEMICAL COMMUNICATIONS, 2014, 50 (92) :14321-14324
[10]   Biomass-Derived Carbon Fiber Aerogel as a Binder-Free Electrode for High-Rate Supercapacitors [J].
Cheng, Ping ;
Li, Ting ;
Yu, Hang ;
Zhi, Lei ;
Liu, Zonghuai ;
Lei, Zhibin .
JOURNAL OF PHYSICAL CHEMISTRY C, 2016, 120 (04) :2079-2086