Colloidal Quantum Dot Inks for Single-Step-Fabricated Field-Effect Transistors: The Importance of Postdeposition Ligand Removal

被引:44
作者
Balazs, Daniel M. [1 ]
Rizkia, Nisrina [1 ]
Fang, Hong-Hua [1 ]
Dirin, Dmitry N. [2 ,3 ]
Momand, Jamo [1 ]
Kooi, Bart J. [1 ]
Kovalenko, Maksym V. [2 ,3 ]
Loi, Maria Antonietta [1 ]
机构
[1] Univ Groningen, Zernike Inst Adv Mat, Nijenborgh 4, NL-9747 AG Groningen, Netherlands
[2] Swiss Fed Inst Technol, Dept Chem & Appl Biosci, Vladimir Prelog Weg 1, CH-8093 Zurich, Switzerland
[3] Empa Swiss Fed Labs Mat Sci & Technol, Uberlandstr 129, CH-8600 Dubendorf, Switzerland
基金
欧洲研究理事会;
关键词
colloidal quantum dot; field-effect transistor; colloidal ink; solution-phase ligand exchange; blade-coating; CHARGE-TRANSPORT; HIGH-MOBILITY; SOLAR-CELLS; NANOCRYSTALS; AMBIPOLAR; EXCHANGE; DEPOSITION; EMISSION; VOLTAGE; SOLIDS;
D O I
10.1021/acsami.7b16882
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Colloidal quantum dots are a class of solution processed semiconductors with good prospects for photovoltaic and optoelectronic applications. Removal of the surfactant, so-called ligand exchange, is a crucial step in making the solid films conductive, but performing it in solid state introduces surface defects and cracks in the films. Hence, the formation of thick, device-grade films have only been possible through layer-by-layer processing, limiting the technological interest for quantum dot solids. Solution-phase ligand exchange before the deposition allows for the direct deposition of thick, homogeneous films suitable for device applications. In this work, fabrication of field-effect transistors in a single step is reported using blade-coating, an upscalable, industrially relevant technique. Most importantly, a postdeposition washing step results in device properties comparable to the best layer-by-layer processed devices, opening the way for large-scale fabrication and further interest from the research community.
引用
收藏
页码:5626 / 5632
页数:7
相关论文
共 38 条
[11]   Charge-Separation Dynamics in Inorganic-Organic Ternary Blends for Efficient Infrared Photodiodes [J].
Jarzab, Dorota ;
Szendrei, Krisztina ;
Yarema, Maksym ;
Pichler, Stefan ;
Heiss, Wolfgang ;
Loi, Maria A. .
ADVANCED FUNCTIONAL MATERIALS, 2011, 21 (11) :1988-1992
[12]  
Kagan CR, 2015, NAT NANOTECHNOL, V10, P1013, DOI [10.1038/NNANO.2015.247, 10.1038/nnano.2015.247]
[13]   One-Step Deposition of Photovoltaic Layers Using Iodide Terminated PbS Quantum Dots [J].
Kim, Sungwoo ;
Noh, Jaehong ;
Choi, Hyekyoung ;
Ha, Heonseok ;
Song, Jung Hoon ;
Shim, Hyung Cheoul ;
Jang, Jihoon ;
Beard, Matthew C. ;
Jeong, Sohee .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2014, 5 (22) :4002-4007
[14]   PbS quantum dot electroabsorption modulation across the extended communications band 1200-1700 nm [J].
Klem, EJD ;
Levina, L ;
Sargent, EH .
APPLIED PHYSICS LETTERS, 2005, 87 (05)
[15]   Thiocyanate-Capped PbS Nanocubes: Ambipolar Transport Enables Quantum Dot Based Circuits on a Flexible Substrate [J].
Koh, Weon-kyu ;
Saudari, Sangameshwar R. ;
Fafarman, Aaron T. ;
Kagan, Cherie R. ;
Murray, Christopher B. .
NANO LETTERS, 2011, 11 (11) :4764-4767
[16]   Colloidal Nanocrystals with Molecular Metal Chalcogenide Surface Ligands [J].
Kovalenko, Maksym V. ;
Scheele, Marcus ;
Talapin, Dmitri V. .
SCIENCE, 2009, 324 (5933) :1417-1420
[17]   Tuning colloidal quantum dot band edge positions through solution-phase surface chemistry modification [J].
Kroupa, Daniel M. ;
Voros, Marton ;
Brawand, Nicholas P. ;
McNichols, Brett W. ;
Miller, Elisa M. ;
Gu, Jing ;
Nozik, Arthur J. ;
Sellinger, Alan ;
Galli, Giulia ;
Beard, Matthew C. .
NATURE COMMUNICATIONS, 2017, 8
[18]   Tuning the Work Function of Polar Zinc Oxide Surfaces using Modified Phosphonic Acid Self-Assembled Monolayers [J].
Lange, Ilja ;
Reiter, Sina ;
Paetzel, Michael ;
Zykov, Anton ;
Nefedov, Alexei ;
Hildebrandt, Jana ;
Hecht, Stefan ;
Kowarik, Stefan ;
Woell, Christof ;
Heimel, Georg ;
Neher, Dieter .
ADVANCED FUNCTIONAL MATERIALS, 2014, 24 (44) :7014-7024
[19]   Phase-Transfer Ligand Exchange of Lead Chalcogenide Quantum Dots for Direct Deposition of Thick, Highly Conductive Films [J].
Lin, Qianglu ;
Yun, Hyeong Jin ;
Liu, Wenyong ;
Song, Hyung-Jun ;
Makarov, Nikolay S. ;
Isaienko, Oleksandr ;
Nakotte, Tom ;
Chen, Gen ;
Luo, Hongmei ;
Klimov, Victor I. ;
Pietryga, Jeffrey M. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2017, 139 (19) :6644-6653
[20]  
Liu MX, 2017, NAT MATER, V16, P258, DOI [10.1038/NMAT4800, 10.1038/nmat4800]