Gravitational dynamics for all tensorial spacetimes carrying predictive, interpretable, and quantizable matter

被引:13
作者
Giesel, Kristina [2 ]
Schuller, Frederic P. [1 ]
Witte, Christof [1 ]
Wohlfarth, Mattias N. R. [3 ,4 ]
机构
[1] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-14476 Potsdam, Germany
[2] Univ Erlangen Nurnberg, Inst Theoret Phys 3, Lehrstuhl Quantengravitat, D-91058 Erlangen, Germany
[3] Univ Hamburg, Zentrum Math Phys, D-22761 Hamburg, Germany
[4] Univ Hamburg, Inst Theoret Phys, D-22761 Hamburg, Germany
来源
PHYSICAL REVIEW D | 2012年 / 85卷 / 10期
关键词
D O I
10.1103/PhysRevD.85.104042
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Only a severely restricted class of tensor fields can provide classical spacetime geometries, namely those that can carry matter field equations which are predictive, interpretable, and quantizable. These three conditions on matter translate into three corresponding algebraic conditions on the underlying tensorial geometry: the latter must be hyperbolic, time-orientable, and energy-distinguishing. Lorentzian metrics, on which general relativity and the standard model of particle physics are built, present just the simplest tensorial spacetime geometry satisfying these conditions. The problem of finding gravitational dynamics-for the general tensorial spacetime geometries satisfying the above minimum requirements-is reformulated in this paper as a system of linear partial differential equations, in the sense that their solutions yield the actions governing the corresponding spacetime geometry. Thus, the search for modified gravitational dynamics is reduced to a clear mathematical task.
引用
收藏
页数:23
相关论文
共 23 条
[1]  
[Anonymous], 2003, FDN CLASSICAL ELECTR
[2]  
ARNOWITT RL, ARXIVGRQC0405109
[3]  
GARDING L, 1951, ACTA MATH-DJURSHOLM, V85, P1
[4]  
HASSETT B., 2007, Introduction to algebraic geometry
[5]   GEOMETRODYNAMICS REGAINED [J].
HOJMAN, SA ;
KUCHAR, K ;
TEITELBOIM, C .
ANNALS OF PHYSICS, 1976, 96 (01) :88-135
[6]   GEOMETRODYNAMICS REGAINED - LAGRANGIAN APPROACH [J].
KUCHAR, K .
JOURNAL OF MATHEMATICAL PHYSICS, 1974, 15 (06) :708-715
[7]   GEOMETRY OF HYPERSPACE .1. [J].
KUCHAR, K .
JOURNAL OF MATHEMATICAL PHYSICS, 1976, 17 (05) :777-791
[8]   KINEMATICS OF TENSOR FIELDS IN HYPERSPACE .2. [J].
KUCHAR, K .
JOURNAL OF MATHEMATICAL PHYSICS, 1976, 17 (05) :792-800
[9]  
Lammerzahl C., 1990, QUANTUM MECH CURVED
[10]   EINSTEIN TENSOR AND ITS GENERALIZATIONS [J].
LOVELOCK, D .
JOURNAL OF MATHEMATICAL PHYSICS, 1971, 12 (03) :498-&