Quantitative stability estimates for Fokker-Planck equations

被引:6
|
作者
Li, Huaiqian [1 ]
Luo, Dejun [2 ,3 ]
机构
[1] Tianjin Univ, Ctr Appl Math, Tianjin 300072, Peoples R China
[2] Chinese Acad Sci, Acad Math & Syst Sci, Key Lab Random Complex Struct & Data Sci, Beijing 100190, Peoples R China
[3] Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
Fokker-Planck equation; Stability estimate; Kantorovich-Rubinstein distance; Superposition principle; DIFFERENTIAL-EQUATIONS; SOBOLEV DIFFUSION; TRANSPORT-EQUATION; WELL-POSEDNESS; CAUCHY-PROBLEM; SDES; UNIQUENESS; DEGENERATE; EXISTENCE; DRIFT;
D O I
10.1016/j.matpur.2018.08.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We derive quantitative stability estimates for solutions of Fokker-Planck equations with irregular coefficients. We are mainly concerned with two different situations: in the degenerate case, the coefficients are assumed to be weakly differentiable, while in the non-degenerate case the drift coefficient satisfies only the Ladyzhenskaya- Prodi-Serrin condition. Our method is based on Trevisan's superposition principle, which represents the solution to the Fokker-Planck equation as the marginal distribution of the martingale solution of the associated stochastic differential equation. (C) 2018 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:125 / 163
页数:39
相关论文
共 50 条
  • [41] Generalized entropies and the Langevin and Fokker-Planck equations
    Akimoto, M
    Suzuki, A
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2002, 40 (06) : 974 - 978
  • [42] Hypergeometric foundations of Fokker-Planck like equations
    Plastino, A.
    Rocca, M. C.
    PHYSICS LETTERS A, 2016, 380 (22-23) : 1900 - 1903
  • [43] Nonlinear Fokker-Planck equations and generalized entropies
    Martinez, S
    Plastino, AR
    Plastino, A
    PHYSICA A, 1998, 259 (1-2): : 183 - 192
  • [44] Microscopic dynamics of nonlinear Fokker-Planck equations
    Santos, Leonardo
    PHYSICAL REVIEW E, 2021, 103 (03)
  • [45] INTEGRABILITY OF HAMILTONIANS ASSOCIATED WITH FOKKER-PLANCK EQUATIONS
    GRAHAM, R
    ROEKAERTS, D
    TEL, T
    PHYSICAL REVIEW A, 1985, 31 (05): : 3364 - 3375
  • [46] STOCHASTIC CHAOS IN A CLASS OR FOKKER-PLANCK EQUATIONS
    MILLONAS, MM
    REICHL, LE
    PHYSICAL REVIEW LETTERS, 1992, 68 (21) : 3125 - 3128
  • [47] Lp-solutions of Fokker-Planck equations
    Wei, Jinlong
    Liu, Bin
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2013, 85 : 110 - 124
  • [48] Operator solutions for fractional Fokker-Planck equations
    Gorska, K.
    Penson, K. A.
    Babusci, D.
    Dattoli, G.
    Duchamp, G. H. E.
    PHYSICAL REVIEW E, 2012, 85 (03):
  • [49] Autocorrelation functions of nonlinear Fokker-Planck equations
    Frank, TD
    EUROPEAN PHYSICAL JOURNAL B, 2004, 37 (02): : 139 - 142
  • [50] Entropy production and nonlinear Fokker-Planck equations
    Casas, G. A.
    Nobre, F. D.
    Curado, E. M. F.
    PHYSICAL REVIEW E, 2012, 86 (06):