Quantitative stability estimates for Fokker-Planck equations

被引:6
|
作者
Li, Huaiqian [1 ]
Luo, Dejun [2 ,3 ]
机构
[1] Tianjin Univ, Ctr Appl Math, Tianjin 300072, Peoples R China
[2] Chinese Acad Sci, Acad Math & Syst Sci, Key Lab Random Complex Struct & Data Sci, Beijing 100190, Peoples R China
[3] Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
Fokker-Planck equation; Stability estimate; Kantorovich-Rubinstein distance; Superposition principle; DIFFERENTIAL-EQUATIONS; SOBOLEV DIFFUSION; TRANSPORT-EQUATION; WELL-POSEDNESS; CAUCHY-PROBLEM; SDES; UNIQUENESS; DEGENERATE; EXISTENCE; DRIFT;
D O I
10.1016/j.matpur.2018.08.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We derive quantitative stability estimates for solutions of Fokker-Planck equations with irregular coefficients. We are mainly concerned with two different situations: in the degenerate case, the coefficients are assumed to be weakly differentiable, while in the non-degenerate case the drift coefficient satisfies only the Ladyzhenskaya- Prodi-Serrin condition. Our method is based on Trevisan's superposition principle, which represents the solution to the Fokker-Planck equation as the marginal distribution of the martingale solution of the associated stochastic differential equation. (C) 2018 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:125 / 163
页数:39
相关论文
共 50 条
  • [31] PROPAGATOR NORM AND SHARP DECAY ESTIMATES FOR FOKKER-PLANCK EQUATIONS WITH LINEAR DRIFT
    Arnold, Anton
    Schmeiser, Christian
    Signorello, Beatrice
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2022, 20 (04) : 1047 - 1080
  • [32] Stability of steady states in kinetic Fokker-Planck equations for bosons and fermions
    Neumann, Lukas
    Sparber, Christof
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2007, 5 (04) : 765 - 777
  • [34] Stability analysis of mean field models described by Fokker-Planck equations
    Frank, T.D.
    Annalen der Physik (Leipzig), 2002, 11 (10-11): : 707 - 716
  • [35] Numerical solution for Fokker-Planck equations in accelerators
    Zorzano, MP
    Mais, H
    Vazquez, L
    PROCEEDINGS OF THE 1997 PARTICLE ACCELERATOR CONFERENCE, VOLS 1-3: PLENARY AND SPECIAL SESSIONS ACCELERATORS AND STORAGE RINGS - BEAM DYNAMICS, INSTRUMENTATION, AND CONTROLS, 1998, : 1825 - 1827
  • [36] Nonlinear Fokker-Planck equations and generalized entropies
    Martinez, S.
    Plastino, A.R.
    Plastino, A.
    Physica A: Statistical Mechanics and its Applications, 1998, 259 (1-2): : 183 - 192
  • [37] A numerical method for generalized Fokker-Planck equations
    Han, Weimin
    Li, Yi
    Sheng, Qiwei
    Tang, Jinping
    RECENT ADVANCES IN SCIENTIFIC COMPUTING AND APPLICATIONS, 2013, 586 : 171 - +
  • [38] Linearization of nonlinear Fokker-Planck equations and applications
    Ren, Panpan
    Roeckner, Michael
    Wang, Feng-Yu
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 322 : 1 - 37
  • [39] ON FOKKER-PLANCK EQUATIONS WITH IN- AND OUTFLOW OF MASS
    Burger, Martin
    Humpert, Ina
    Pietschmann, Jan-Frederik
    KINETIC AND RELATED MODELS, 2020, 13 (02) : 249 - 277
  • [40] TIME AVERAGES FOR KINETIC FOKKER-PLANCK EQUATIONS
    Brigati, Giovanni
    KINETIC AND RELATED MODELS, 2022, : 524 - 539