Quantitative stability estimates for Fokker-Planck equations

被引:6
作者
Li, Huaiqian [1 ]
Luo, Dejun [2 ,3 ]
机构
[1] Tianjin Univ, Ctr Appl Math, Tianjin 300072, Peoples R China
[2] Chinese Acad Sci, Acad Math & Syst Sci, Key Lab Random Complex Struct & Data Sci, Beijing 100190, Peoples R China
[3] Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
来源
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES | 2019年 / 122卷
基金
中国国家自然科学基金;
关键词
Fokker-Planck equation; Stability estimate; Kantorovich-Rubinstein distance; Superposition principle; DIFFERENTIAL-EQUATIONS; SOBOLEV DIFFUSION; TRANSPORT-EQUATION; WELL-POSEDNESS; CAUCHY-PROBLEM; SDES; UNIQUENESS; DEGENERATE; EXISTENCE; DRIFT;
D O I
10.1016/j.matpur.2018.08.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We derive quantitative stability estimates for solutions of Fokker-Planck equations with irregular coefficients. We are mainly concerned with two different situations: in the degenerate case, the coefficients are assumed to be weakly differentiable, while in the non-degenerate case the drift coefficient satisfies only the Ladyzhenskaya- Prodi-Serrin condition. Our method is based on Trevisan's superposition principle, which represents the solution to the Fokker-Planck equation as the marginal distribution of the martingale solution of the associated stochastic differential equation. (C) 2018 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:125 / 163
页数:39
相关论文
共 39 条
  • [1] Transport equation and Cauchy problem for BV vector fields
    Ambrosio, L
    [J]. INVENTIONES MATHEMATICAE, 2004, 158 (02) : 227 - 260
  • [2] Ambrosio L, 2008, LECT NOTES MATH, V1927, P1
  • [3] [Anonymous], ELECT COMMUN PROBAB
  • [4] [Anonymous], 1989, STOCHASTIC DIFFERENT, DOI DOI 10.1002/BIMJ.4710320720
  • [5] Distances between transition probabilities of diffusions and applications to nonlinear Fokker-Planck-Kolmogorov equations
    Bogachev, V. I.
    Roeckner, M.
    Shaposhnikov, S. V.
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2016, 271 (05) : 1262 - 1300
  • [6] On the uniqueness of solutions to continuity equations
    Bogachev, V. I.
    Da Prato, G.
    Roeckner, M.
    Shaposhnikov, S. V.
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 259 (08) : 3854 - 3873
  • [7] Bogachev V. I., 2015, J. Math. Sci. (N. Y.), V207, P147, DOI [10.1007/s10958-015-2362-0, DOI 10.1007/S10958-015-2362-0]
  • [8] Bogachev VI, 2015, MATH SURVEYS MONOGRA, V207
  • [9] Estimates and regularity results for the DiPerna-Lions flow
    Crippa, Gianluca
    De Lellis, Camillo
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2008, 616 : 15 - 46
  • [10] ORDINARY DIFFERENTIAL-EQUATIONS, TRANSPORT-THEORY AND SOBOLEV SPACES
    DIPERNA, RJ
    LIONS, PL
    [J]. INVENTIONES MATHEMATICAE, 1989, 98 (03) : 511 - 547