Quantitative stability estimates for Fokker-Planck equations

被引:6
|
作者
Li, Huaiqian [1 ]
Luo, Dejun [2 ,3 ]
机构
[1] Tianjin Univ, Ctr Appl Math, Tianjin 300072, Peoples R China
[2] Chinese Acad Sci, Acad Math & Syst Sci, Key Lab Random Complex Struct & Data Sci, Beijing 100190, Peoples R China
[3] Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
Fokker-Planck equation; Stability estimate; Kantorovich-Rubinstein distance; Superposition principle; DIFFERENTIAL-EQUATIONS; SOBOLEV DIFFUSION; TRANSPORT-EQUATION; WELL-POSEDNESS; CAUCHY-PROBLEM; SDES; UNIQUENESS; DEGENERATE; EXISTENCE; DRIFT;
D O I
10.1016/j.matpur.2018.08.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We derive quantitative stability estimates for solutions of Fokker-Planck equations with irregular coefficients. We are mainly concerned with two different situations: in the degenerate case, the coefficients are assumed to be weakly differentiable, while in the non-degenerate case the drift coefficient satisfies only the Ladyzhenskaya- Prodi-Serrin condition. Our method is based on Trevisan's superposition principle, which represents the solution to the Fokker-Planck equation as the marginal distribution of the martingale solution of the associated stochastic differential equation. (C) 2018 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:125 / 163
页数:39
相关论文
共 50 条
  • [1] Wasserstein stability estimates for covariance-preconditioned Fokker-Planck equations
    Carrillo, J. A.
    Vaes, U.
    NONLINEARITY, 2021, 34 (04) : 2275 - 2295
  • [2] Geometric Fokker-Planck equations II : maximal hypoelliptic estimates
    Lebeau, Gilles
    ANNALES DE L INSTITUT FOURIER, 2007, 57 (04) : 1285 - 1314
  • [3] INTEGRAL IDENTITY AND MEASURE ESTIMATES FOR STATIONARY FOKKER-PLANCK EQUATIONS
    Huang, Wen
    Ji, Min
    Liu, Zhenxin
    Yi, Yingfei
    ANNALS OF PROBABILITY, 2015, 43 (04): : 1712 - 1730
  • [4] Invariants of Fokker-Planck equations
    Sumiyoshi Abe
    The European Physical Journal Special Topics, 2017, 226 : 529 - 532
  • [5] Invariants of Fokker-Planck equations
    Abe, Sumiyoshi
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2017, 226 (03): : 529 - 532
  • [6] Deformed fokker-planck equations
    Ho, Choon-Lin
    Sasaki, Ryu
    PROGRESS OF THEORETICAL PHYSICS, 2007, 118 (04): : 667 - 674
  • [7] GEOMETRIC FOKKER-PLANCK EQUATIONS
    Lebeau, Gilles
    PORTUGALIAE MATHEMATICA, 2005, 62 (04) : 469 - 530
  • [8] φ-Entropies: convexity, coercivity and hypocoercivity for Fokker-Planck and kinetic Fokker-Planck equations
    Dolbeault, Jean
    Li, Xingyu
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2018, 28 (13): : 2637 - 2666
  • [9] Stability of Global Maxwellian for Fully Nonlinear Fokker-Planck Equations
    Liao, Jie
    Yang, Xiongfeng
    JOURNAL OF STATISTICAL PHYSICS, 2021, 185 (03)
  • [10] A posteriori error estimates for the Fokker-Planck and Fermi pencil beam equations
    Asadzadeh, M
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2000, 10 (05): : 737 - 769