Jacobi sequences of powers of random variables

被引:2
作者
Accardi, Luigi [1 ]
Barhoumi, Abdessatar [2 ]
Rhaima, Mohamed [3 ]
机构
[1] Univ Roma Tor Vergata, Ctr Vito Volterra, Via Tor Vergata, I-00133 Rome, Italy
[2] Univ Carthage, Nabeul Preparatory Engn Inst, Dept Math, Campus Univ, Mrezgua 8000, Nabeul, Tunisia
[3] Univ Tunis El Manar, Fac Sci Tunis, Dept Math, Tunis 1060, Tunisia
基金
俄罗斯科学基金会;
关键词
Jacobi sequences; orthogonal polynomials; random variable; orthogonal projections; INTERACTING FOCK SPACES; PROBABILITY-MEASURES;
D O I
10.1142/S0219025718500017
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We express, in full generality, the Jacobi sequences and the orthogonal polynomials of the powers of a real-valued random variable X with all moments, as functions of the corresponding sequences of the random variable itself.
引用
收藏
页数:22
相关论文
共 10 条
  • [1] Probability measures in terms of creation, annihilation, and neutral operators
    Accardi, L
    Kuo, HH
    Stan, A
    [J]. QUANTUM PROBABILITY AND INFINITE DIMENSIONAL ANALYSIS, 2005, 18 : 1 - 11
  • [2] Interacting Fock spaces and Gaussianization of probability measures
    Accardi, L
    Bozejko, M
    [J]. INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 1998, 1 (04) : 663 - 670
  • [3] Characterization of probability measures through the canonically associated interacting Fock spaces
    Accardi, L
    Kuo, HH
    Stan, A
    [J]. INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 2004, 7 (04) : 485 - 505
  • [4] Moments and commutators of probability measures
    Accardi, Luigi
    Kuo, Hui-Hsiung
    Stan, Aurel
    [J]. INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 2007, 10 (04) : 591 - 612
  • [5] Jacobi sequences of squares of random variables
    Accardi, Luigi
    Barhoumi, Abdessatar
    Rhaima, Mohamed
    [J]. STOCHASTICS-AN INTERNATIONAL JOURNAL OF PROBABILITY AND STOCHASTIC REPORTS, 2017, 89 (6-7): : 868 - 882
  • [6] FOURIER TRANSFORM OF RANDOM VARIABLES ASSOCIATED WITH THE MULTI-DIMENSIONAL HEISENBERG LIE ALGEBRA
    Accardi, Luigi
    Boukas, Andreas
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 143 (09) : 4095 - 4101
  • [7] Chihara T.S., 1978, INTRO ORTHOGONAL POL
  • [8] Erdely A., 1953, Higher transcendental functions, V2
  • [9] Hora A., 2007, Theoretical and Mathematical Physics
  • [10] Lebedev NN., 1965, Special functions and their applications, DOI [10.1063/1.3047047, DOI 10.1063/1.3047047]