Atomic resolution of nitrogen-doped graphene on Cu foils

被引:10
作者
Wang, Chundong [1 ,2 ]
Schouteden, Koen [2 ]
Wu, Qi-Hui [3 ]
Li, Zhe [2 ]
Jiang, Jianjun [1 ]
Van Haesendonck, Chris [2 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Opt & Elect Informat, Wuhan 430074, Peoples R China
[2] Katholieke Univ Leuven, Dept Phys & Astron, Lab Solid State Phys & Magnetism, B-3001 Leuven, Belgium
[3] Quanzhou Normal Univ, Dept Chem Mat, Coll Chem Engn & Mat Sci, Quanzhou 362000, Peoples R China
基金
中央高校基本科研业务费专项资金资助; 中国国家自然科学基金;
关键词
atomic resolution; nitrogen-doped graphene; Cu; STM; STS; TUNNELING SPECTROSCOPY; EPITAXIAL GRAPHENE; COPPER FOILS; HIGH-QUALITY; CARBON; GROWTH; FILMS; TRANSPORT; CU(111); UNIFORM;
D O I
10.1088/0957-4484/27/36/365702
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Atomic-level substitutional doping can significantly tune the electronic properties of graphene. Using low-temperature scanning tunneling microscopy and spectroscopy, the atomic-scale crystalline structure of graphene grown on polycrystalline Cu, the distribution of nitrogen dopants and their effect on the electronic properties of graphene were investigated. Both the graphene sheet growth and nitrogen doping were performed using microwave plasma-enhanced chemical vapor deposition. The results indicated that the nitrogen dopants preferentially sit at the grain boundaries of the graphene sheets and confirmed that plasma treatment is a potential method to incorporate foreign atoms into the graphene lattice to tailor the graphene's electronic properties.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] [Anonymous], 2009, NATURE, DOI DOI 10.1038/nature07719
  • [2] Superior thermal conductivity of single-layer graphene
    Balandin, Alexander A.
    Ghosh, Suchismita
    Bao, Wenzhong
    Calizo, Irene
    Teweldebrhan, Desalegne
    Miao, Feng
    Lau, Chun Ning
    [J]. NANO LETTERS, 2008, 8 (03) : 902 - 907
  • [3] Banhart F, 2011, ACS NANO, V5, P26, DOI [10.1021/nn102598m, 10.1016/B978-0-08-102053-1.00005-3]
  • [4] Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics
    Berger, C
    Song, ZM
    Li, TB
    Li, XB
    Ogbazghi, AY
    Feng, R
    Dai, ZT
    Marchenkov, AN
    Conrad, EH
    First, PN
    de Heer, WA
    [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (52) : 19912 - 19916
  • [5] TUNNELING SPECTROSCOPY AND INVERSE PHOTOEMISSION - IMAGE AND FIELD STATES
    BINNIG, G
    FRANK, KH
    FUCHS, H
    GARCIA, N
    REIHL, B
    ROHRER, H
    SALVAN, F
    WILLIAMS, AR
    [J]. PHYSICAL REVIEW LETTERS, 1985, 55 (09) : 991 - 994
  • [6] Graphenes Converted from Polymers
    Byun, Sun-Jung
    Lim, Hyunseob
    Shin, Ga-Young
    Han, Tae-Hee
    Oh, Sang Ho
    Ahn, Jong-Hyun
    Choi, Hee Cheul
    Lee, Tae-Woo
    [J]. JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2011, 2 (05): : 493 - 497
  • [7] Quantifying Defects in Graphene via Raman Spectroscopy at Different Excitation Energies
    Cancado, L. G.
    Jorio, A.
    Martins Ferreira, E. H.
    Stavale, F.
    Achete, C. A.
    Capaz, R. B.
    Moutinho, M. V. O.
    Lombardo, A.
    Kulmala, T. S.
    Ferrari, A. C.
    [J]. NANO LETTERS, 2011, 11 (08) : 3190 - 3196
  • [8] The electronic properties of graphene
    Castro Neto, A. H.
    Guinea, F.
    Peres, N. M. R.
    Novoselov, K. S.
    Geim, A. K.
    [J]. REVIEWS OF MODERN PHYSICS, 2009, 81 (01) : 109 - 162
  • [9] Atomic-Scale Investigation of Graphene Grown on Cu Foil and the Effects of Thermal Annealing
    Cho, Jongweon
    Gao, Li
    Tian, Jifa
    Cao, Helin
    Wu, Wei
    Yu, Qingkai
    Yitamben, Esmeralda N.
    Fisher, Brandon
    Guest, Jeffrey R.
    Chen, Yong P.
    Guisinger, Nathan P.
    [J]. ACS NANO, 2011, 5 (05) : 3607 - 3613
  • [10] Epitaxial Graphene on Cu(111)
    Gao, Li
    Guest, Jeffrey R.
    Guisinger, Nathan P.
    [J]. NANO LETTERS, 2010, 10 (09) : 3512 - 3516