Penalized bias reduction in extreme value estimation for censored Pareto-type data, and long-tailed insurance applications

被引:10
作者
Beirlant, J. [1 ,2 ]
Maribe, G. [2 ]
Verster, A. [2 ]
机构
[1] Katholieke Univ Leuven, Dept Math, LStat & LRisk, Leuven, Belgium
[2] Univ Free State, Dept Math Stat & Actuarial Sci, Bloemfontein, South Africa
基金
新加坡国家研究基金会;
关键词
Extreme value index; Pareto-type; Tail estimation; Random censoring; Bias reduction; VALUE INDEX; DISTRIBUTIONS;
D O I
10.1016/j.insmatheco.2017.11.008
中图分类号
F [经济];
学科分类号
02 ;
摘要
The subject of tail estimation for randomly censored data from a heavy tailed distribution receives growing attention, motivated by applications for instance in actuarial statistics. The bias of the available estimators of the extreme value index can be substantial and depends strongly on the amount of censoring. We review the available estimators, propose a new bias reduced estimator, and show how shrinkage estimation can help to keep the MSE under control. A bootstrap algorithm is proposed to construct confidence intervals. We compare these new proposals with the existing estimators through simulation. We conclude this paper with a detailed study of a long-tailed car insurance portfolio, which typically exhibits heavy censoring. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:114 / 122
页数:9
相关论文
共 15 条
[1]  
ALVES MIF, 2003, PORTUGALIAE MATH, V0060, P00193
[2]   Bayesian estimation of the tail index of a heavy tailed distribution under random censoring [J].
Ameraoui, Abdelkader ;
Boukhetala, Kamal ;
Dupuy, Jean-Francois .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2016, 104 :148-168
[3]  
[Anonymous], 1971, An Introduction to Bayesian Inference in Econometrics
[4]   Bias reduced tail estimation for censored Pareto type distributions [J].
Beirlant, J. ;
Bardoutsos, A. ;
de Wet, T. ;
Gijbels, I. .
STATISTICS & PROBABILITY LETTERS, 2016, 109 :78-88
[5]  
BEIRLANT J, 2007, EXTREMES, V10, P151
[6]  
Beirlant J., 2017, REVSTAT IN PRESS
[7]   Second-order refined peaks-over-threshold modelling for heavy-tailed distributions [J].
Beirlant, Jan ;
Joossens, Elisabeth ;
Segers, Johan .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2009, 139 (08) :2800-2815
[8]   Gaussian approximation to the extreme value index estimator of a heavy-tailed distribution under random censoring [J].
Brahimi B. ;
Meraghni D. ;
Necir A. .
Mathematical Methods of Statistics, 2015, 24 (4) :266-279
[9]  
Brahimi B., 2016, ARXIV150203955V2
[10]   Statistics of extremes under random censoring [J].
Einmahl, John H. J. ;
Fils-Villetard, Amtlie ;
Guillou, Armelle .
BERNOULLI, 2008, 14 (01) :207-227