BEHAVIOR PATTERNS IN MULTIPARAMETRIC DYNAMICAL SYSTEMS: LORENZ MODEL

被引:11
作者
Barrio, Roberto [1 ,2 ]
Blesa, Fernando [3 ]
Serrano, Sergio [1 ,2 ]
机构
[1] Univ Zaragoza, IUMA, E-50009 Zaragoza, Spain
[2] Univ Zaragoza, GME, Dept Matemat Aplicada, E-50009 Zaragoza, Spain
[3] Univ Zaragoza, GME, Dept Fis Aplicada, E-50009 Zaragoza, Spain
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2012年 / 22卷 / 06期
关键词
Lorenz equations; chaos; sensitivity analysis; chaos indicators; STRANGE ATTRACTORS; BOUNDS; CHAOS; FLOW;
D O I
10.1142/S0218127412300194
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In experimental and theoretical studies of Dynamical Systems, there are usually several parameters that govern the models. Thus, a detailed study of the global parametric phase space is not easy and normally unachievable. In this paper, we show that a careful selection of one straight line (or other 1D manifold) permits us to obtain a global idea of the evolution of the system in some circumstances. We illustrate this fact with the paradigmatic example of the Lorenz model, based on a global study, changing all three parameters. Besides, searching in other regions, for all the detected behavior patterns in one straight line, we have been able to see that missing topological structures of the chaotic attractors may be found on the chaotic-saddles.
引用
收藏
页数:14
相关论文
共 25 条
[21]   A PROCEDURE FOR FINDING NUMERICAL TRAJECTORIES ON CHAOTIC SADDLES [J].
NUSSE, HE ;
YORKE, JA .
PHYSICA D, 1989, 36 (1-2) :137-156
[22]  
SALTZMAN B, 1962, J ATMOS SCI, V19, P329, DOI 10.1175/1520-0469(1962)019<0329:FAFCAA>2.0.CO
[23]  
2
[24]  
Sparrow C., 2012, The Lorenz Equations: Bifurcations, Chaos and Strange Attractors, Vvol 41
[25]   What's new on Lorenz strange attractors? [J].
Viana, M .
MATHEMATICAL INTELLIGENCER, 2000, 22 (03) :6-19