Resolving hot spot microstructure using x-ray penumbral imaging (invited)

被引:52
作者
Bachmann, B. [1 ]
Hilsabeck, T. [2 ]
Field, J. [1 ]
Masters, N. [1 ]
Reed, C. [2 ]
Pardini, T. [1 ]
Rygg, J. R. [1 ]
Alexander, N. [2 ]
Benedetti, L. R. [1 ]
Doppner, T. [1 ]
Forsman, A. [2 ]
Izumi, N. [1 ]
LePape, S. [1 ]
Ma, T. [1 ]
MacPhee, A. G. [1 ]
Nagel, S. [1 ]
Patel, P. [1 ]
Spears, B. [1 ]
Landen, O. L. [1 ]
机构
[1] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA
[2] Gen Atom, San Diego, CA 92186 USA
关键词
FUSION-TARGETS; PLASMAS;
D O I
10.1063/1.4959161
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
We have developed and fielded x-ray penumbral imaging on the National Ignition Facility in order to enable sub-10 mu m resolution imaging of stagnated plasma cores (hot spots) of spherically shock compressed spheres and shell implosion targets. By utilizing circular tungsten and tantalum apertures with diameters ranging from 20 mu m to 2 mm, in combination with image plate and gated x-ray detectors as well as imaging magnifications ranging from 4 to 64, we have demonstrated high-resolution imaging of hot spot plasmas at x-ray energies above 5 keV. Here we give an overview of the experimental design criteria involved and demonstrate the most relevant influences on the reconstruction of x-ray penumbral images, as well as mitigation strategies of image degrading effects like over-exposed pixels, artifacts, and photon limited source emission. We describe experimental results showing the advantages of x-ray penumbral imaging over conventional Fraunhofer and photon limited pinhole imaging and showcase how internal hot spot microstructures can be resolved. Published by AIP Publishing.
引用
收藏
页数:7
相关论文
共 41 条
[1]  
[Anonymous], 1993, FDN MED IMAGING
[2]   Using penumbral imaging to measure micrometer size plasma hot spots in Gbar equation of state experiments on the National Ignition Facility [J].
Bachmann, B. ;
Kritcher, A. L. ;
Benedetti, L. R. ;
Falcone, R. W. ;
Glenn, S. ;
Hawreliak, J. ;
Izumi, N. ;
Kraus, D. ;
Landen, O. L. ;
Le Pape, S. ;
Ma, T. ;
Perez, F. ;
Swift, D. ;
Doeppner, T. .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2014, 85 (11)
[3]   High-speed three-dimensional plasma temperature determination of axially symmetric free-burning arcs [J].
Bachmann, B. ;
Kozakov, R. ;
Goett, G. ;
Ekkert, K. ;
Bachmann, J-P ;
Marques, J-L ;
Schoepp, H. ;
Uhrlandt, D. ;
Schein, J. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2013, 46 (12)
[4]   Advances in x-ray framing cameras at the National Ignition Facility to improve quantitative precision in x-ray imaging [J].
Benedetti, L. R. ;
Holder, J. P. ;
Perkins, M. ;
Brown, C. G. ;
Anderson, C. S. ;
Allen, F. V. ;
Petre, R. B. ;
Hargrove, D. ;
Glenn, S. M. ;
Simanovskaia, N. ;
Bradley, D. K. ;
Bell, P. .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2016, 87 (02)
[5]  
Born M, 2005, PRINCIPLES OPTICS
[6]   A review of image denoising algorithms, with a new one [J].
Buades, A ;
Coll, B ;
Morel, JM .
MULTISCALE MODELING & SIMULATION, 2005, 4 (02) :490-530
[7]   Improved Performance of High Areal Density Indirect Drive Implosions at the National Ignition Facility using a Four-Shock Adiabat Shaped Drive [J].
Casey, D. T. ;
Milovich, J. L. ;
Smalyuk, V. A. ;
Clark, D. S. ;
Robey, H. F. ;
Pak, A. ;
MacPhee, A. G. ;
Baker, K. L. ;
Weber, C. R. ;
Ma, T. ;
Park, H-S. ;
Doeppner, T. ;
Callahan, D. A. ;
Haan, S. W. ;
Patel, P. K. ;
Peterson, J. L. ;
Hoover, D. ;
Nikroo, A. ;
Yeamans, C. B. ;
Merrill, F. E. ;
Volegov, P. L. ;
Fittinghoff, D. N. ;
Grim, G. P. ;
Edwards, M. J. ;
Landen, O. L. ;
Lafortune, K. N. ;
MacGowan, B. J. ;
Widmayer, C. C. ;
Sayre, D. B. ;
Hatarik, R. ;
Bond, E. J. ;
Nagel, S. R. ;
Benedetti, L. R. ;
Izumi, N. ;
Khan, S. ;
Bachmann, B. ;
Spears, B. K. ;
Cerjan, C. J. ;
Johnson, M. Gatu ;
Frenje, J. A. .
PHYSICAL REVIEW LETTERS, 2015, 115 (10)
[8]   Simulating x-ray Thomson scattering signals from high-density, millimetre-scale plasmas at the National Ignition Facility [J].
Chapman, D. A. ;
Kraus, D. ;
Kritcher, A. L. ;
Bachmann, B. ;
Collins, G. W. ;
Falcone, R. W. ;
Gaffney, J. A. ;
Gericke, D. O. ;
Glenzer, S. H. ;
Guymer, T. M. ;
Hawreliak, J. A. ;
Landen, O. L. ;
Le Pape, S. ;
Ma, T. ;
Neumayer, P. ;
Nilsen, J. ;
Pak, A. ;
Redmer, R. ;
Swift, D. C. ;
Vorberger, J. ;
Doeppner, T. .
PHYSICS OF PLASMAS, 2014, 21 (08)
[9]   Radiation hydrodynamics modeling of the highest compression inertial confinement fusion ignition experiment from the National Ignition Campaign [J].
Clark, D. S. ;
Marinak, M. M. ;
Weber, C. R. ;
Eder, D. C. ;
Haan, S. W. ;
Hammel, B. A. ;
Hinkel, D. E. ;
Jones, O. S. ;
Milovich, J. L. ;
Patel, P. K. ;
Robey, H. F. ;
Salmonson, J. D. ;
Sepke, S. M. ;
Thomas, C. A. .
PHYSICS OF PLASMAS, 2015, 22 (02)
[10]   NEUTRON PENUMBRAL IMAGING OF INERTIAL CONFINEMENT FUSION-TARGETS AT PHEBUS [J].
DELAGE, O ;
GARCONNET, JP ;
SCHIRMANN, D ;
ROUYER, A .
REVIEW OF SCIENTIFIC INSTRUMENTS, 1995, 66 (02) :1205-1209