Generalized continuity equation and modified normalization in PT-symmetric quantum mechanics

被引:136
作者
Bagchi, B
Quesne, C
Znojil, M
机构
[1] Univ Calcutta, Dept Appl Math, Kolkata 700009, W Bengal, India
[2] Univ Libre Brussels, B-1050 Brussels, Belgium
[3] Ustav Jaderne Fyziky AV CR, Rez 25068, Czech Republic
关键词
quantum mechanics; continuity equation; PT symmetry; normalization;
D O I
10.1142/S0217732301005333
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The continuity equation relating the change in time of the position probability density to the gradient of the probability current density is generalized to PT-symmetric quantum mechanics. The normalization condition of eigenfunctions is modified in accordance with this new conservation law and illustrated with some detailed examples.
引用
收藏
页码:2047 / 2057
页数:11
相关论文
共 27 条
[1]   Real and complex discrete eigenvalues in an exactly solvable one-dimensional complex PT-invariant potential [J].
Ahmed, Z .
PHYSICS LETTERS A, 2001, 282 (06) :343-348
[2]  
[Anonymous], 1980, Gos. Izd-vo Fiz.-Mat. Literatury
[3]   sl(2, C) as a complex Lie algebra and the associated non-Hermitian Hamiltonians with real eigenvalues [J].
Bagchi, B ;
Quesne, C .
PHYSICS LETTERS A, 2000, 273 (5-6) :285-292
[4]   PT-symmetric sextic potentials [J].
Bagchi, B ;
Cannata, F ;
Quesne, C .
PHYSICS LETTERS A, 2000, 269 (2-3) :79-82
[5]   A new PT-symmetric complex Hamiltonian with a real spectrum [J].
Bagchi, B ;
Roychoudhury, R .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (01) :L1-L3
[6]   Model of supersymmetric quantum field theory with broken parity symmetry [J].
Bender, CM ;
Milton, KA .
PHYSICAL REVIEW D, 1998, 57 (06) :3595-3608
[7]   Real spectra in non-Hermitian Hamiltonians having PT symmetry [J].
Bender, CM ;
Boettcher, S .
PHYSICAL REVIEW LETTERS, 1998, 80 (24) :5243-5246
[8]   PT-symmetric quantum mechanics [J].
Bender, CM ;
Boettcher, S ;
Meisinger, PN .
JOURNAL OF MATHEMATICAL PHYSICS, 1999, 40 (05) :2201-2229
[9]   Double-scaling limit of a broken symmetry quantum field theory in dimensions D<2 [J].
Bender, CM ;
Boettcher, S ;
Jones, HF ;
Meisinger, PN .
JOURNAL OF MATHEMATICAL PHYSICS, 2001, 42 (05) :1960-1973
[10]   A nonunitary version of massless quantum electrodynamics possessing a critical point [J].
Bender, CM ;
Milton, KA .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (07) :L87-L92