Clustered and deep echo state networks for signal noise reduction

被引:7
作者
de Oliveira Junior, Laercio [1 ,2 ]
Stelzer, Florian [3 ,4 ,5 ]
Zhao, Liang [1 ]
机构
[1] Univ Sao Paulo, Fac Philosophy Sci & Letters Ribeirao Preto, Ribeirao Preto, SP, Brazil
[2] Meta Platforms Inc, London, England
[3] Univ Tartu, Inst Comp Sci, Tartu, Estonia
[4] Humboldt Univ, Dept Math, Berlin, Germany
[5] Tech Univ Berlin, Inst Math, Berlin, Germany
基金
巴西圣保罗研究基金会;
关键词
Echo state networks; Reservoir computing; Complex networks; Noise reduction;
D O I
10.1007/s10994-022-06135-6
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Echo State Networks (ESNs) are Recurrent Neural Networks with fixed input and internal (hidden) weights, and adaptable output weights. The hidden part of an ESN can be considered as a discrete-time dynamical system, called reservoir. In classical ESNs, the internal connections are obtained from an Erdos-Renyi graph. A recent study proposed ESNs with clustered adjacency matrices (CESNs), where the clusters are either Erdos-Renyi graphs or Barabasi-Albert-like graphs. In this work, we investigate the effectiveness of CESNs and apply them for signal denoising. In addition, we introduce and study deep CESNs with multiple clustered layers. We found that CESNs and deep CESNs can compete with deep ESNs for all tasks that we considered.
引用
收藏
页码:2885 / 2904
页数:20
相关论文
共 48 条
[1]   State-of-the-art in artificial neural network applications: A survey [J].
Abiodun, Oludare Isaac ;
Jantan, Aman ;
Omolara, Abiodun Esther ;
Dada, Kemi Victoria ;
Mohamed, Nachaat AbdElatif ;
Arshad, Humaira .
HELIYON, 2018, 4 (11)
[2]   Determining the Hierarchical Architecture of the Human Brain Using Subject-Level Clustering of Functional Networks [J].
Akiki, Teddy J. ;
Abdallah, Chadi G. .
SCIENTIFIC REPORTS, 2019, 9 (1)
[3]  
[Anonymous], 1989, Complex Systems
[4]   Information processing using a single dynamical node as complex system [J].
Appeltant, L. ;
Soriano, M. C. ;
Van der Sande, G. ;
Danckaert, J. ;
Massar, S. ;
Dambre, J. ;
Schrauwen, B. ;
Mirasso, C. R. ;
Fischer, I. .
NATURE COMMUNICATIONS, 2011, 2
[5]   Emergence of scaling in random networks [J].
Barabási, AL ;
Albert, R .
SCIENCE, 1999, 286 (5439) :509-512
[6]   Clustering of Neural Activity: A Design Principle for Population Codes [J].
Berry, Michael J., II ;
Tkacik, Gasper .
FRONTIERS IN COMPUTATIONAL NEUROSCIENCE, 2020, 14
[7]  
Bollobás B, 2003, SIAM PROC S, P132
[8]   Parallel photonic information processing at gigabyte per second data rates using transient states [J].
Brunner, Daniel ;
Soriano, Miguel C. ;
Mirasso, Claudio R. ;
Fischer, Ingo .
NATURE COMMUNICATIONS, 2013, 4
[9]  
Cho K., 2014, ARXIV14061078, DOI [10.48550/arXiv.1406.1078, DOI 10.3115/V1/D14-1179]
[10]   Collective behavior of a small-world recurrent neural system with scale-free distribution [J].
Deng, Zhidong ;
Zhang, Yi .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 2007, 18 (05) :1364-1375