Cross-validation estimate of the number of clusters in a network

被引:23
作者
Kawamoto, Tatsuro [1 ]
Kabashima, Yoshiyuki [2 ]
机构
[1] Natl Inst Adv Ind Sci & Technol, Artificial Intelligence Res Ctr, Koto Ku, 2-3-26 Aomi, Tokyo, Japan
[2] Tokyo Inst Technol, Dept Math & Comp Sci, Midori Ku, 4259-G5-22,Nagatsuta Cho, Yokohama, Kanagawa 2268502, Japan
关键词
COMMUNITY STRUCTURE; MODEL;
D O I
10.1038/s41598-017-03623-x
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Network science investigates methodologies that summarise relational data to obtain better interpretability. Identifying modular structures is a fundamental task, and assessment of the coarse-grain level is its crucial step. Here, we propose principled, scalable, and widely applicable assessment criteria to determine the number of clusters in modular networks based on the leave-one-out cross-validation estimate of the edge prediction error.
引用
收藏
页数:17
相关论文
共 50 条
[1]  
Abbe Emmanuel, 2015, ADV NEURAL INFORM PR, P676
[2]  
Airoldi EM, 2008, J MACH LEARN RES, V9, P1981
[3]   Information geometry of divergence functions [J].
Amari, S. ;
Cichocki, A. .
BULLETIN OF THE POLISH ACADEMY OF SCIENCES-TECHNICAL SCIENCES, 2010, 58 (01) :183-195
[4]  
[Anonymous], ARXIV14111715
[5]  
[Anonymous], 2014, Probability Theory and Related Fields
[6]  
[Anonymous], ARXIV160202256V1
[7]  
[Anonymous], 2008, Advances in Neural Information Processing Systems
[8]   A survey of cross-validation procedures for model selection [J].
Arlot, Sylvain ;
Celisse, Alain .
STATISTICS SURVEYS, 2010, 4 :40-79
[9]  
Barabsi A. L., 2016, Network Science
[10]  
Bishop C.M., 2006, PATTERN RECOGN, V4, P738, DOI DOI 10.1117/1.2819119