Feasible insertions in job shop scheduling, short cycles and stable sets

被引:20
作者
Groeflin, Heinz [1 ]
Klinkert, Andreas [1 ]
机构
[1] Univ Fribourg, Dept Informat, CH-1700 Fribourg, Switzerland
关键词
scheduling; job shop; insertion problem; polyhedral description;
D O I
10.1016/j.ejor.2005.12.025
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
Insertion problems arise in scheduling when additional activities have to be inserted into a given schedule. This paper investigates insertion problems in a general disjunctive scheduling framework capturing a variety of job shop scheduling problems and insertion types. First, a class of scheduling problems is introduced; characterized by disjunctive graphs with the so-called short cycle property, and it is shown that in such problems, the feasible selections correspond to the stable sets of maximum cardinality in an associated conflict graph. Two types of insertion problems are then identified where the underlying disjunctive graph is through- or bi-connected. For these cases, it is shown that the short cycle property holds and the conflict graph is bipartite, allowing to derive a polyhedral characterization of all feasible insertions. An efficient method for deciding whether there exists a feasible insertion, and a lower and upper bound procedure for the minimum makespan insertion problem are developed. For bi-connected graphs, this procedure solves the insertion problem to optimality. The obtained results are applied to three extensions of the classical Job Shop, the Multi-Processor Task, Blocking and No-Wait Job Shop, and two types of insertions, job and block insertion. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:763 / 785
页数:23
相关论文
共 30 条